These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 7515272)

  • 1. Control genes for reverse transcriptase/polymerase chain reaction (RT-PCR).
    Taylor JJ; Heasman PA
    Br J Haematol; 1994 Feb; 86(2):444-5. PubMed ID: 7515272
    [No Abstract]   [Full Text] [Related]  

  • 2. Control genes in reverse transcriptase-polymerase chain reaction assays.
    Lion T
    Leukemia; 1996 Sep; 10(9):1527-8. PubMed ID: 8751474
    [No Abstract]   [Full Text] [Related]  

  • 3. Cytokine mapping in human keratinocytes and keratinocyte cell line by reverse transcriptase-polymerase chain reaction (RT-PCR) method.
    Yamada H; Tezuka T
    J Dermatol; 1992 Nov; 19(11):719-21. PubMed ID: 1284065
    [No Abstract]   [Full Text] [Related]  

  • 4. Detection of acidic fibroblast growth factor mRNA in the rat ovary using reverse transcription-polymerase chain reaction amplification.
    Koos RD; Seidel RH
    Biochem Biophys Res Commun; 1989 Nov; 165(1):82-8. PubMed ID: 2480128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PCR-mediated synthesis of exogenous competitors for quantitative RT-PCR.
    Schneeberger C; Zeillinger R
    Biotechniques; 1996 Mar; 20(3):360-2. PubMed ID: 8679187
    [No Abstract]   [Full Text] [Related]  

  • 6. Rapid nonradioactive detection of HIV-1 RNA from a single-cell equivalent by reverse transcription PCR with nested primers.
    Zimmerman K; Pischinger K; Mannhalter JW
    Biotechniques; 1993 Nov; 15(5):806-8. PubMed ID: 7505597
    [No Abstract]   [Full Text] [Related]  

  • 7. Comparison of selective polymerase chain reaction primers and differential probe hybridization of polymerase chain reaction products for determination of relative amounts of codon 215 mutant and wild-type HIV-1 populations.
    Eastman PS; Urdea M; Besemer D; Stempien M; Kolberg J
    J Acquir Immune Defic Syndr Hum Retrovirol; 1995 Jul; 9(3):264-73. PubMed ID: 7540490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of oligonucleotide probes for the reverse transcriptase-polymerase chain reaction detection of epidermal growth factor-urogastrone receptor mRNA in guinea pig smooth muscle cell cultures.
    Yang SG; Hogan A; Schultz GA; Hollenberg MD
    Proc West Pharmacol Soc; 1990; 33():95-8. PubMed ID: 1703310
    [No Abstract]   [Full Text] [Related]  

  • 9. Simultaneous amplification of four DNA repair genes and beta-actin in human lymphocytes by multiplex reverse transcriptase-PCR.
    Wei Q; Xu X; Cheng L; Legerski RJ; Ali-Osman F
    Cancer Res; 1995 Nov; 55(21):5025-9. PubMed ID: 7585546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Approach to the molecular basis of nephron heterogeneity: application of reverse transcription-polymerase chain reaction to dissected tubule segments.
    Briggs JP; Todd-Turla K; Schnermann JB; Killen PD
    Semin Nephrol; 1993 Jan; 13(1):2-12. PubMed ID: 7679518
    [No Abstract]   [Full Text] [Related]  

  • 11. A method for rapid generation of competitive standard molecules for RT-PCR avoiding the problem of competitor/probe cross-reactions.
    Ross R; Kleiz R; Reske-Kunz AB
    PCR Methods Appl; 1995 Jun; 4(6):371-5. PubMed ID: 7580933
    [No Abstract]   [Full Text] [Related]  

  • 12. Sensitive procedure for the amplification of HIV-1 RNA using a combined reverse-transcription and amplification reaction.
    Nijhuis M; Boucher CA; Schuurman R
    Biotechniques; 1995 Aug; 19(2):178-80, 182. PubMed ID: 8527130
    [No Abstract]   [Full Text] [Related]  

  • 13. Salt-dependent performance variation of DNA polymerases in co-amplification PCR.
    Favre N; Rudin W
    Biotechniques; 1996 Jul; 21(1):28-30. PubMed ID: 8816229
    [No Abstract]   [Full Text] [Related]  

  • 14. Quantitation of RNA using the polymerase chain reaction.
    Foley KP; Leonard MW; Engel JD
    Trends Genet; 1993 Nov; 9(11):380-5. PubMed ID: 7508648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of M-MLV reverse transcriptase and Tth polymerase activity in RT-PCR of samples with low virus burden.
    Cusi MG; Valassina M; Valensin PE
    Biotechniques; 1994 Dec; 17(6):1034-6. PubMed ID: 7532975
    [No Abstract]   [Full Text] [Related]  

  • 16. Human beta-actin retropseudogenes interfere with RT-PCR.
    Dirnhofer S; Berger C; Untergasser G; Geley S; Berger P
    Trends Genet; 1995 Oct; 11(10):380-1. PubMed ID: 7482760
    [No Abstract]   [Full Text] [Related]  

  • 17. Appropriate controls for reverse transcription polymerase chain reaction (RT-PCR).
    Cross NC; Lin F; Goldman JM
    Br J Haematol; 1994 May; 87(1):218. PubMed ID: 7947253
    [No Abstract]   [Full Text] [Related]  

  • 18. A rapid procedure for the quantitation of low abundance RNAs by competitive reverse transcription-polymerase chain reaction.
    Grassi G; Zentilin L; Tafuro S; Diviacco S; Ventura A; Falaschi A; Giacca M
    Nucleic Acids Res; 1994 Oct; 22(21):4547-9. PubMed ID: 7526345
    [No Abstract]   [Full Text] [Related]  

  • 19. Isolation and molecular phylogenetic analysis of actin-coding regions from Emiliania huxleyi, a Prymnesiophyte alga, by reverse transcriptase and PCR methods.
    Bhattacharya D; Stickel SK; Sogin ML
    Mol Biol Evol; 1993 May; 10(3):689-703. PubMed ID: 7687735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitivity of tyrosinase mRNA detection by RT-PCR: rTth DNA polymerase vs. MMLV-RT and AmpliTaq polymerase.
    Juhasz A; Ravi S; O'Connell CD
    Biotechniques; 1996 Apr; 20(4):592-600. PubMed ID: 8800676
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.