These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 7515685)

  • 1. Alamethicin pyromellitate: an ion-activated channel-forming peptide.
    Woolley GA; Epand RM; Kerr ID; Sansom MS; Wallace BA
    Biochemistry; 1994 Jun; 33(22):6850-8. PubMed ID: 7515685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferrocenoyl derivatives of alamethicin: redox-sensitive ion channels.
    Schmitt JD; Sansom MS; Kerr ID; Lunt GG; Eisenthal R
    Biochemistry; 1997 Feb; 36(5):1115-22. PubMed ID: 9033402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion channel stabilization of synthetic alamethicin analogs by rings of inter-helix H-bonds.
    Molle G; Dugast JY; Spach G; Duclohier H
    Biophys J; 1996 Apr; 70(4):1669-75. PubMed ID: 8785325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alamethicin-leucine zipper hybrid peptide: a prototype for the design of artificial receptors and ion channels.
    Futaki S; Fukuda M; Omote M; Yamauchi K; Yagami T; Niwa M; Sugiura Y
    J Am Chem Soc; 2001 Dec; 123(49):12127-34. PubMed ID: 11734010
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational study of a synthetic analogue of alamethicin. Influence of the conformation on ion-channel lifetimes.
    Brachais L; Davoust D; Molle G
    Int J Pept Protein Res; 1995 Feb; 45(2):164-72. PubMed ID: 7540163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional modifications of alamethicin ion channels by substitution of glutamine 7, glycine 11 and proline 14.
    Kaduk C; Dathe M; Bienert M
    Biochim Biophys Acta; 1998 Aug; 1373(1):137-46. PubMed ID: 9733952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature dependence of the interaction of alamethicin helices in membranes.
    Woolley GA; Wallace BA
    Biochemistry; 1993 Sep; 32(37):9819-25. PubMed ID: 7690593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An anion-selective analogue of the channel-forming peptide alamethicin.
    Starostin AV; Butan R; Borisenko V; James DA; Wenschuh H; Sansom MS; Woolley GA
    Biochemistry; 1999 May; 38(19):6144-50. PubMed ID: 10320341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N-terminal insertion of alamethicin in channel formation studied using its covalent dimer N-terminally linked by disulfide bond.
    Sakoh M; Okazaki T; Nagaoka Y; Asami K
    Biochim Biophys Acta; 2003 May; 1612(1):117-21. PubMed ID: 12729937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prolines are not essential residues in the "barrel-stave" model for ion channels induced by alamethicin analogues.
    Duclohier H; Molle G; Dugast JY; Spach G
    Biophys J; 1992 Sep; 63(3):868-73. PubMed ID: 1384742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alamethicin interaction with lipid membranes: a spectroscopic study on synthetic analogues.
    Stella L; Burattini M; Mazzuca C; Palleschi A; Venanzi M; Coin I; Peggion C; Toniolo C; Pispisa B
    Chem Biodivers; 2007 Jun; 4(6):1299-312. PubMed ID: 17589867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ion-channel activity of longibrachins LGA I and LGB II: effects of pro-2/Ala and gln-18/Glu substitutions on the alamethicin voltage-gated membrane channels.
    Cosette P; Rebuffat S; Bodo B; Molle G
    Biochim Biophys Acta; 1999 Nov; 1461(1):113-22. PubMed ID: 10556493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extramembrane control of ion channel peptide assemblies, using alamethicin as an example.
    Futaki S; Noshiro D; Kiwada T; Asami K
    Acc Chem Res; 2013 Dec; 46(12):2924-33. PubMed ID: 23680081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlation between the free energy of a channel-forming voltage-gated peptide and the spontaneous curvature of bilayer lipids.
    Lewis JR; Cafiso DS
    Biochemistry; 1999 May; 38(18):5932-8. PubMed ID: 10231547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational changes in alamethicin associated with substitution of its alpha-methylalanines with leucines: a FTIR spectroscopic analysis and correlation with channel kinetics.
    Haris PI; Molle G; Duclohier H
    Biophys J; 2004 Jan; 86(1 Pt 1):248-53. PubMed ID: 14695266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics and aggregation of the peptide ion channel alamethicin. Measurements using spin-labeled peptides.
    Archer SJ; Ellena JF; Cafiso DS
    Biophys J; 1991 Aug; 60(2):389-98. PubMed ID: 1717016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure-function relationships in helix-bundle channels probed via total chemical synthesis of alamethicin dimers: effects of a Gln7 to Asn7 mutation.
    Jaikaran DC; Biggin PC; Wenschuh H; Sansom MS; Woolley GA
    Biochemistry; 1997 Nov; 36(45):13873-81. PubMed ID: 9374865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Membrane structure of voltage-gated channel forming peptides by site-directed spin-labeling.
    Barranger-Mathys M; Cafiso DS
    Biochemistry; 1996 Jan; 35(2):498-505. PubMed ID: 8555220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alamethicin aggregation in lipid membranes.
    Pan J; Tristram-Nagle S; Nagle JF
    J Membr Biol; 2009 Sep; 231(1):11-27. PubMed ID: 19789905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-assisted channel stabilization: disposition of a single histidine on the N-terminus of alamethicin yields channels with extraordinarily long lifetimes.
    Noshiro D; Asami K; Futaki S
    Biophys J; 2010 May; 98(9):1801-8. PubMed ID: 20441743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.