BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 7515883)

  • 1. Interaction of Clostridium botulinum C2 toxin with lipid bilayer membranes. Formation of cation-selective channels and inhibition of channel function by chloroquine.
    Schmid A; Benz R; Just I; Aktories K
    J Biol Chem; 1994 Jun; 269(24):16706-11. PubMed ID: 7515883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Channel formation by the binding component of Clostridium botulinum C2 toxin: glutamate 307 of C2II affects channel properties in vitro and pH-dependent C2I translocation in vivo.
    Blöcker D; Bachmeyer C; Benz R; Aktories K; Barth H
    Biochemistry; 2003 May; 42(18):5368-77. PubMed ID: 12731878
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of Clostridium perfringens iota-toxin with lipid bilayer membranes. Demonstration of channel formation by the activated binding component Ib and channel block by the enzyme component Ia.
    Knapp O; Benz R; Gibert M; Marvaud JC; Popoff MR
    J Biol Chem; 2002 Feb; 277(8):6143-52. PubMed ID: 11741922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chloroquine Analog Interaction with C2- and Iota-Toxin in Vitro and in Living Cells.
    Kronhardt A; Beitzinger C; Barth H; Benz R
    Toxins (Basel); 2016 Aug; 8(8):. PubMed ID: 27517960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of C2-toxin inhibition by fluphenazine and related compounds: investigation of their binding kinetics to the C2II-channel using the current noise analysis.
    Bachmeyer C; Orlik F; Barth H; Aktories K; Benz R
    J Mol Biol; 2003 Oct; 333(3):527-40. PubMed ID: 14556742
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clostridium botulinum C2 toxin. Identification of the binding site for chloroquine and related compounds and influence of the binding site on properties of the C2II channel.
    Neumeyer T; Schiffler B; Maier E; Lang AE; Aktories K; Benz R
    J Biol Chem; 2008 Feb; 283(7):3904-14. PubMed ID: 18077455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chloroquine derivatives block the translocation pores and inhibit cellular entry of Clostridium botulinum C2 toxin and Bacillus anthracis lethal toxin.
    Kreidler AM; Benz R; Barth H
    Arch Toxicol; 2017 Mar; 91(3):1431-1445. PubMed ID: 27106023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pore formation in artificial membranes by the secreted hemolysins of Proteus vulgaris and Morganella morganii.
    Benz R; Hardie KR; Hughes C
    Eur J Biochem; 1994 Mar; 220(2):339-47. PubMed ID: 7510229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enterotoxin of Clostridium perfringens type A forms ion-permeable channels in a lipid bilayer membrane.
    Sugimoto N; Takagi M; Ozutsumi K; Harada S; Matsuda M
    Biochem Biophys Res Commun; 1988 Oct; 156(1):551-6. PubMed ID: 2460102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of Clostridium botulinum C2 toxin with lipid bilayer membranes and Vero cells: inhibition of channel function by chloroquine and related compounds in vitro and intoxification in vivo.
    Bachmeyer C; Benz R; Barth H; Aktories K; Gilbert M; Popoff MR
    FASEB J; 2001 Jul; 15(9):1658-60. PubMed ID: 11427518
    [No Abstract]   [Full Text] [Related]  

  • 11. HlyA hemolysin of Vibrio cholerae O1 biotype E1 Tor. Identification of the hemolytic complex and evidence for the formation of anion-selective ion-permeable channels.
    Menzl K; Maier E; Chakraborty T; Benz R
    Eur J Biochem; 1996 Sep; 240(3):646-54. PubMed ID: 8856066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ion-conducting channels produced by botulinum toxin in planar lipid membranes.
    Donovan JJ; Middlebrook JL
    Biochemistry; 1986 May; 25(10):2872-6. PubMed ID: 2424493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the channel properties of tetanus toxin in planar lipid bilayers.
    Gambale F; Montal M
    Biophys J; 1988 May; 53(5):771-83. PubMed ID: 2455552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitions of the translocation pore of Clostridium botulinum C2 toxin by tailored azolopyridinium salts protects human cells from intoxication.
    Bronnhuber A; Maier E; Riedl Z; Hajós G; Benz R; Barth H
    Toxicology; 2014 Feb; 316():25-33. PubMed ID: 24394545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of ion channels formed by Staphylococcus aureus delta-toxin.
    Mellor IR; Thomas DH; Sansom MS
    Biochim Biophys Acta; 1988 Jul; 942(2):280-94. PubMed ID: 2456097
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Benz R; Popoff MR
    Toxins (Basel); 2018 Aug; 10(9):. PubMed ID: 30135397
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TcdA1 of Photorhabdus luminescens: electrophysiological analysis of pore formation and effector binding.
    Lang AE; Konukiewitz J; Aktories K; Benz R
    Biophys J; 2013 Jul; 105(2):376-84. PubMed ID: 23870259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid residues involved in membrane insertion and pore formation of Clostridium botulinum C2 toxin.
    Lang AE; Neumeyer T; Sun J; Collier RJ; Benz R; Aktories K
    Biochemistry; 2008 Aug; 47(32):8406-13. PubMed ID: 18636745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a large conductance voltage gated cationic channel in rough endoplasmic reticulum of rat hepatocytes.
    Sepehri H; Eliassi A; Sauvé R; Ashrafpour M; Saghiri R
    Arch Biochem Biophys; 2007 Jan; 457(1):35-40. PubMed ID: 17118328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity of amyloid beta protein fragment [1-40]-formed channels.
    Kourie JI; Henry CL; Farrelly P
    Cell Mol Neurobiol; 2001 Jun; 21(3):255-84. PubMed ID: 11569537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.