These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Contribution of nitric oxide to metabolic coronary vasodilation in the human heart. Quyyumi AA; Dakak N; Andrews NP; Gilligan DM; Panza JA; Cannon RO Circulation; 1995 Aug; 92(3):320-6. PubMed ID: 7634444 [TBL] [Abstract][Full Text] [Related]
5. Vasomotor properties of porcine endocardial and epicardial microvessels. Quillen JE; Harrison DG Am J Physiol; 1992 Apr; 262(4 Pt 2):H1143-8. PubMed ID: 1566896 [TBL] [Abstract][Full Text] [Related]
6. Endothelium-dependent regulation of coronary tone in the neonatal pig. McGowan FX; Davis PJ; del Nido PJ; Sobek M; Allen JW; Downing SE Anesth Analg; 1994 Dec; 79(6):1094-101. PubMed ID: 7978431 [TBL] [Abstract][Full Text] [Related]
8. Pharmacological reactivity of human epicardial coronary arteries: characterization of relaxation responses to endothelium-derived relaxing factor. Stork AP; Cocks TM Br J Pharmacol; 1994 Dec; 113(4):1099-104. PubMed ID: 7889260 [TBL] [Abstract][Full Text] [Related]
9. Adenosine and AICA-riboside fail to enhance microvascular endothelial preservation. Sellke FW; Friedman M; Wang SY; Piana RN; Dai HB; Johnson RG Ann Thorac Surg; 1994 Jul; 58(1):200-6. PubMed ID: 8037525 [TBL] [Abstract][Full Text] [Related]
10. Blood and albumin cardioplegia preserve endothelium-dependent microvascular responses. Sellke FW; Shafique T; Johnson RG; Dai HB; Banitt PF; Schoen FJ; Weintraub RM Ann Thorac Surg; 1993 Apr; 55(4):977-85. PubMed ID: 7682056 [TBL] [Abstract][Full Text] [Related]
11. Basic FGF enhances endothelium-dependent relaxation of the collateral-perfused coronary microcirculation. Sellke FW; Wang SY; Friedman M; Harada K; Edelman ER; Grossman W; Simons M Am J Physiol; 1994 Oct; 267(4 Pt 2):H1303-11. PubMed ID: 7943375 [TBL] [Abstract][Full Text] [Related]
12. Evidence for differential roles of nitric oxide (NO) and hyperpolarization in endothelium-dependent relaxation of pig isolated coronary artery. Kilpatrick EV; Cocks TM Br J Pharmacol; 1994 Jun; 112(2):557-65. PubMed ID: 7521260 [TBL] [Abstract][Full Text] [Related]
14. Natural course of the impairment of endothelium-dependent relaxations after balloon endothelium removal in porcine coronary arteries. Possible dysfunction of a pertussis toxin-sensitive G protein. Shimokawa H; Flavahan NA; Vanhoutte PM Circ Res; 1989 Sep; 65(3):740-53. PubMed ID: 2504508 [TBL] [Abstract][Full Text] [Related]
16. Stimulation of cyclic GMP production in cultured endothelial cells of the pig by bradykinin, adenosine diphosphate, calcium ionophore A23187 and nitric oxide. Boulanger C; Schini VB; Moncada S; Vanhoutte PM Br J Pharmacol; 1990 Sep; 101(1):152-6. PubMed ID: 2178013 [TBL] [Abstract][Full Text] [Related]
17. Effects of brief coronary occlusion and reperfusion on porcine coronary artery reactivity. Headrick JP; Angello DA; Berne RM Circulation; 1990 Dec; 82(6):2163-9. PubMed ID: 2242540 [TBL] [Abstract][Full Text] [Related]
18. Endothelium-dependent hyperpolarization caused by bradykinin in human coronary arteries. Nakashima M; Mombouli JV; Taylor AA; Vanhoutte PM J Clin Invest; 1993 Dec; 92(6):2867-71. PubMed ID: 8254041 [TBL] [Abstract][Full Text] [Related]
19. Recovery of endothelium-dependent relaxations four weeks after ischemia and progressive reperfusion in canine coronary arteries. Lee JJ; Olmos L; Vanhoutte PM Proc Assoc Am Physicians; 1996 Sep; 108(5):362-7. PubMed ID: 8902880 [TBL] [Abstract][Full Text] [Related]
20. Thimerosal blocks stimulated but not basal release of endothelium-derived relaxing factor (EDRF) in dog isolated coronary artery. Crack P; Cocks T Br J Pharmacol; 1992 Oct; 107(2):566-72. PubMed ID: 1384915 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]