These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
88 related articles for article (PubMed ID: 7516455)
1. Comparison of proteolytic variables in a lean and obese strain of pig at the ages of 2.5 and 7 months. Kretchmar DH; Koohmaraie M; Mersmann HJ Lab Anim Sci; 1994 Feb; 44(1):38-41. PubMed ID: 7516455 [TBL] [Abstract][Full Text] [Related]
2. Combined effect of epinephrine and exercise on calpain/calpastatin and cathepsin B and L activity in porcine longissimus muscle. Ertbjerg P; Henckel P; Karlsson A; Larsen LM; Møller AJ J Anim Sci; 1999 Sep; 77(9):2428-36. PubMed ID: 10492449 [TBL] [Abstract][Full Text] [Related]
3. Body composition, in vitro lipid metabolism and skeletal muscle characteristics in fast-growing, lean and in slow-growing, obese pigs at equal age and weight. Buhlinger CA; Wangsness PJ; Martin RJ; Ziegler JH Growth; 1978 Jun; 42(2):225-36. PubMed ID: 680583 [TBL] [Abstract][Full Text] [Related]
4. Cellular characteristics of skeletal muscle in selected strains of pigs and mice and the unselected controls. Ezekwe MO; Martin RJ Growth; 1975 Mar; 39(1):95-106. PubMed ID: 1132778 [TBL] [Abstract][Full Text] [Related]
5. Calcium-dependent and calcium-independent protease activities in skeletal muscle during sepsis. Bhattacharyya J; Thompson K; Sayeed MM Circ Shock; 1991 Oct; 35(2):117-22. PubMed ID: 1777946 [TBL] [Abstract][Full Text] [Related]
6. Effect of age, muscle type, and insulin-like growth factor-II genotype on muscle proteolytic and lipolytic enzyme activities in boars. Van den Maagdenberg K; Claeys E; Stinckens A; Buys N; De Smet S J Anim Sci; 2007 Apr; 85(4):952-60. PubMed ID: 17202393 [TBL] [Abstract][Full Text] [Related]
7. Muscle growth in two genetically different lines of swine. Harbison SA; Goll DE; Parrish FC; Wang V; Kline EA Growth; 1976 Sep; 40(3):253-83. PubMed ID: 976769 [TBL] [Abstract][Full Text] [Related]
8. In vivo effect of a beta-adrenergic agonist on activity of calcium-dependent proteinases, their specific inhibitor, and cathepsins B and H in skeletal muscle. Kretchmar DH; Hathaway MR; Epley RJ; Dayton WR Arch Biochem Biophys; 1989 Nov; 275(1):228-35. PubMed ID: 2573315 [TBL] [Abstract][Full Text] [Related]
9. Decreased expression of calpain and calpastatin mRNA during development is highly correlated with muscle protein accumulation in neonatal pigs. Li Z; Cao B; Zhao B; Yang X; Fan MZ; Yang J Comp Biochem Physiol A Mol Integr Physiol; 2009 Apr; 152(4):498-503. PubMed ID: 19130893 [TBL] [Abstract][Full Text] [Related]
10. Isolation and characterization of mu-calpain, m-calpain, and calpastatin from postmortem muscle. I. Initial steps. Camou JP; Mares SW; Marchello JA; Vazquez R; Taylor M; Thompson VF; Goll DE J Anim Sci; 2007 Dec; 85(12):3400-14. PubMed ID: 17878283 [TBL] [Abstract][Full Text] [Related]
11. Influence of glutamine infusion on ubiquitin, caspase-3, cathepsins L and B, and m-calpain expression in sheep with nutritionally induced metabolic acidosis. Greenwood SL; AlZahal O; Swanson KC; Matthews JC; McBride BW J Anim Sci; 2009 Jun; 87(6):2073-9. PubMed ID: 19251930 [TBL] [Abstract][Full Text] [Related]
12. Effect of vitamin E-deficiency on the activity of some lysosomal and non-lysosomal proteases in rabbit muscles. Katona G; Székessy-Hermann V; Guba F; Sohár I Gen Physiol Biophys; 1991 Oct; 10(5):505-14. PubMed ID: 1816030 [TBL] [Abstract][Full Text] [Related]
13. [Action of muscular proteinases on fast and slow myosins. Relation with post-mortem proteolysis in muscles of variable contractility]. Ouali A; Dufour E; Obled A; Deval C; Valin C Reprod Nutr Dev (1980); 1988; 28(3B):839-44. PubMed ID: 2847260 [TBL] [Abstract][Full Text] [Related]
14. Skeletal muscle cellularity and histochemistry in young lean and obese pigs. Hausman GJ; Campion DR Growth; 1986; 50(3):287-95. PubMed ID: 2948891 [TBL] [Abstract][Full Text] [Related]
15. Age-related changes in activities and localizations of cathepsins D, E, B, and L in the rat brain tissues. Nakanishi H; Tominaga K; Amano T; Hirotsu I; Inoue T; Yamamoto K Exp Neurol; 1994 Mar; 126(1):119-28. PubMed ID: 8157122 [TBL] [Abstract][Full Text] [Related]
16. Dietary-induced changes of muscle growth rate in pigs: effects on in vivo and postmortem muscle proteolysis and meat quality. Kristensen L; Therkildsen M; Riis B; Sørensen MT; Oksbjerg N; Purslow PP; Ertbjerg P J Anim Sci; 2002 Nov; 80(11):2862-71. PubMed ID: 12462253 [TBL] [Abstract][Full Text] [Related]
17. Increase in catheptic activity and appearance of phagocytes in the white muscle of chum salmon during spawning migration. Yamashita M; Konagaya S Biomed Biochim Acta; 1991; 50(4-6):565-7. PubMed ID: 1801724 [TBL] [Abstract][Full Text] [Related]
18. Effects of lamb age, muscle type, and 24-hour activity of endogenous proteinases on postmortem proteolysis. Whipple G; Koohmaraie M J Anim Sci; 1992 Mar; 70(3):798-804. PubMed ID: 1564003 [TBL] [Abstract][Full Text] [Related]
19. Factors affecting growth and survival of neonatal genetically obese and lean swine: cross fostering experiments. Mersmann HJ; Pond WG; Stone RT; Yen JT; Lindvall RN Growth; 1984; 48(2):209-20. PubMed ID: 6469054 [TBL] [Abstract][Full Text] [Related]
20. mRNA levels of the calpain system in longissimus muscle of young pigs during prolonged feeding of a protein-free diet. van den Hemel-Grooten HN; te Pas MF; van den Bosch TJ; Garssen GJ; Schreurs VV; Verstegen MW J Anim Sci; 1997 Apr; 75(4):968-74. PubMed ID: 9110209 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]