These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 7516656)
1. The role of Glu-60 in the specificity of the recombinant ribonuclease from Bacillus amyloliquefaciens (barnase) towards dinucleotides, poly(A) and RNA. Bastyns K; Froeyer M; Volckaert G; Engelborghs Y Biochem J; 1994 Jun; 300 ( Pt 3)(Pt 3):737-42. PubMed ID: 7516656 [TBL] [Abstract][Full Text] [Related]
2. Experimental and theoretical study of electrostatic effects on the isoelectric pH and the pKa of the catalytic residue His-102 of the recombinant ribonuclease from Bacillus amyloliquefaciens (barnase). Bastyns K; Froeyen M; Diaz JF; Volckaert G; Engelborghs Y Proteins; 1996 Mar; 24(3):370-8. PubMed ID: 8778784 [TBL] [Abstract][Full Text] [Related]
3. Kinetic characterization of the recombinant ribonuclease from Bacillus amyloliquefaciens (barnase) and investigation of key residues in catalysis by site-directed mutagenesis. Mossakowska DE; Nyberg K; Fersht AR Biochemistry; 1989 May; 28(9):3843-50. PubMed ID: 2665810 [TBL] [Abstract][Full Text] [Related]
4. Shift in nucleotide conformational equilibrium contributes to increased rate of catalysis of GpAp versus GpA in barnase. Giraldo J; De Maria L; Wodak SJ Proteins; 2004 Aug; 56(2):261-76. PubMed ID: 15211510 [TBL] [Abstract][Full Text] [Related]
5. Increase of specificity of RNase from Bacillus amyloliquefaciens (barnase) by substitution of Glu for Ser57 using site-directed mutagenesis. Yakovlev GI; Moiseyev GP; Struminskaya NK; Romakhina ER; Leshchinskaya IB; Hartley RW Eur J Biochem; 1993 Jul; 215(1):167-70. PubMed ID: 8344276 [TBL] [Abstract][Full Text] [Related]
6. Interaction of barnase with its polypeptide inhibitor barstar studied by protein engineering. Schreiber G; Fersht AR Biochemistry; 1993 May; 32(19):5145-50. PubMed ID: 8494892 [TBL] [Abstract][Full Text] [Related]
7. Effect of nucleotide substrate binding on the pKa of catalytic residues in barnase. Gordon-Beresford RM; Van Belle D; Giraldo J; Wodak SJ Proteins; 1996 Jun; 25(2):180-94. PubMed ID: 8811734 [TBL] [Abstract][Full Text] [Related]
8. [Comparison of the heat stability and structure close homologs--Bacillus amyloliquefaciens ribonuclease and Bacillus intermedius 7P ribonuclease]. Makarov AA; Kuznetsova NV; Protasevich II; Fedorov BB; Korolev SV; Struminskaia NK; Bazhulina NP; Balaban NP; Leshchinskaia IV; Khartli RV Mol Biol (Mosk); 1993; 27(2):416-28. PubMed ID: 8487771 [TBL] [Abstract][Full Text] [Related]
9. The role of Glu73 of barnase in catalysis and the binding of barstar. Schreiber G; Frisch C; Fersht AR J Mol Biol; 1997 Jul; 270(1):111-22. PubMed ID: 9231905 [TBL] [Abstract][Full Text] [Related]
11. Secreting recombinant barnase by Lactococcus lactis and its application in reducing RNA from forages. Ai Y; Li X; Wu X; Montalbán-López M; Zheng Z; Mu D Enzyme Microb Technol; 2023 Mar; 164():110191. PubMed ID: 36608408 [TBL] [Abstract][Full Text] [Related]
12. Barnase has subsites that give rise to large rate enhancements. Day AG; Parsonage D; Ebel S; Brown T; Fersht AR Biochemistry; 1992 Jul; 31(28):6390-5. PubMed ID: 1633151 [TBL] [Abstract][Full Text] [Related]
13. Mutational analysis of the active site of RNase of Bacillus intermedius (BINASE). Yakovlev GI; Moiseyev GP; Struminskaya NK; Borzykh OA; Kipenskaya LV; Znamenskaya LV; Leschinskaya IB; Chernokalskaya EB; Hartley RW FEBS Lett; 1994 Nov; 354(3):305-6. PubMed ID: 7957945 [TBL] [Abstract][Full Text] [Related]
14. Complementation of peptides of barnase, extracellular ribonuclease of Bacillus amyloliquefaciens. Hartley RW J Biol Chem; 1977 May; 252(10):3252-4. PubMed ID: 863882 [TBL] [Abstract][Full Text] [Related]
15. Insertion in barnase of a loop sequence from ribonuclease T1. Investigating sequence and structure alignments by protein engineering. Vuilleumier S; Fersht AR Eur J Biochem; 1994 May; 221(3):1003-12. PubMed ID: 8181455 [TBL] [Abstract][Full Text] [Related]
17. Comparative study of binase and barnase: experience in chimeric ribonucleases. Schulga A; Kurbanov F; Kirpichnikov M; Protasevich I; Lobachov V; Ranjbar B; Chekhov V; Polyakov K; Engelborghs Y; Makarov A Protein Eng; 1998 Sep; 11(9):775-82. PubMed ID: 9796826 [TBL] [Abstract][Full Text] [Related]
18. Subsite binding in an RNase: structure of a barnase-tetranucleotide complex at 1.76-A resolution. Buckle AM; Fersht AR Biochemistry; 1994 Feb; 33(7):1644-53. PubMed ID: 8110767 [TBL] [Abstract][Full Text] [Related]
19. Fusion of the antiferritin antibody VL domain to barnase results in enhanced solubility and altered pH stability. Martsev SP; Tsybovsky YI; Stremovskiy OA; Odintsov SG; Balandin TG; Arosio P; Kravchuk ZI; Deyev SM Protein Eng Des Sel; 2004 Jan; 17(1):85-93. PubMed ID: 14985541 [TBL] [Abstract][Full Text] [Related]
20. Histidine-aromatic interactions in barnase. Elevation of histidine pKa and contribution to protein stability. Loewenthal R; Sancho J; Fersht AR J Mol Biol; 1992 Apr; 224(3):759-70. PubMed ID: 1569555 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]