BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 7516689)

  • 1. The charybdotoxin receptor of a Shaker K+ channel: peptide and channel residues mediating molecular recognition.
    Goldstein SA; Pheasant DJ; Miller C
    Neuron; 1994 Jun; 12(6):1377-88. PubMed ID: 7516689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrostatic distance geometry in a K+ channel vestibule.
    Stocker M; Miller C
    Proc Natl Acad Sci U S A; 1994 Sep; 91(20):9509-13. PubMed ID: 7524078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the outer pore region of the apamin-sensitive Ca2+-activated K+ channel rSK2.
    Jäger H; Grissmer S
    Toxicon; 2004 Jun; 43(8):951-60. PubMed ID: 15208028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A strongly interacting pair of residues on the contact surface of charybdotoxin and a Shaker K+ channel.
    Naranjo D; Miller C
    Neuron; 1996 Jan; 16(1):123-30. PubMed ID: 8562075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping the receptor site for charybdotoxin, a pore-blocking potassium channel inhibitor.
    MacKinnon R; Heginbotham L; Abramson T
    Neuron; 1990 Dec; 5(6):767-71. PubMed ID: 1702643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intimations of K+ channel structure from a complete functional map of the molecular surface of charybdotoxin.
    Stampe P; Kolmakova-Partensky L; Miller C
    Biochemistry; 1994 Jan; 33(2):443-50. PubMed ID: 7506933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping the binding site of a human ether-a-go-go-related gene-specific peptide toxin (ErgTx) to the channel's outer vestibule.
    Pardo-Lopez L; Zhang M; Liu J; Jiang M; Possani LD; Tseng GN
    J Biol Chem; 2002 May; 277(19):16403-11. PubMed ID: 11864985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BeKm-1 is a HERG-specific toxin that shares the structure with ChTx but the mechanism of action with ErgTx1.
    Zhang M; Korolkova YV; Liu J; Jiang M; Grishin EV; Tseng GN
    Biophys J; 2003 May; 84(5):3022-36. PubMed ID: 12719233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrostatic interaction between charybdotoxin and a tetrameric mutant of Shaker K(+) channels.
    Thompson J; Begenisich T
    Biophys J; 2000 May; 78(5):2382-91. PubMed ID: 10777734
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of maurotoxin action on Shaker potassium channels.
    Avdonin V; Nolan B; Sabatier JM; De Waard M; Hoshi T
    Biophys J; 2000 Aug; 79(2):776-87. PubMed ID: 10920011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charybdotoxin block of Shaker K+ channels suggests that different types of K+ channels share common structural features.
    MacKinnon R; Reinhart PH; White MM
    Neuron; 1988 Dec; 1(10):997-1001. PubMed ID: 2483094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of a toxin from the scorpion Tityus serrulatus with a cloned K+ channel from squid (sqKv1A).
    Ellis KC; Tenenholz TC; Jerng H; Hayhurst M; Dudlak CS; Gilly WF; Blaustein MP; Weber DJ
    Biochemistry; 2001 May; 40(20):5942-53. PubMed ID: 11352729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping function to structure in a channel-blocking peptide: electrostatic mutants of charybdotoxin.
    Park CS; Miller C
    Biochemistry; 1992 Sep; 31(34):7749-55. PubMed ID: 1380827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural conservation in prokaryotic and eukaryotic potassium channels.
    MacKinnon R; Cohen SL; Kuo A; Lee A; Chait BT
    Science; 1998 Apr; 280(5360):106-9. PubMed ID: 9525854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial localization of the K+ channel selectivity filter by mutant cycle-based structure analysis.
    Ranganathan R; Lewis JH; MacKinnon R
    Neuron; 1996 Jan; 16(1):131-9. PubMed ID: 8562077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of agitoxin2, charybdotoxin, and iberiotoxin with potassium channels: selectivity between voltage-gated and Maxi-K channels.
    Gao YD; Garcia ML
    Proteins; 2003 Aug; 52(2):146-54. PubMed ID: 12833539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterotetramer formation and charybdotoxin sensitivity of two K+ channels cloned from smooth muscle.
    Russell SN; Overturf KE; Horowitz B
    Am J Physiol; 1994 Dec; 267(6 Pt 1):C1729-33. PubMed ID: 7528976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of scorpion toxin binding to voltage-gated K+ channels.
    Lipkind GM; Fozzard HA
    J Membr Biol; 1997 Aug; 158(3):187-96. PubMed ID: 9263881
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling the structure of agitoxin in complex with the Shaker K+ channel: a computational approach based on experimental distance restraints extracted from thermodynamic mutant cycles.
    Eriksson MA; Roux B
    Biophys J; 2002 Nov; 83(5):2595-609. PubMed ID: 12414693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of charybdotoxin with permeant ions inside the pore of a K+ channel.
    Park CS; Miller C
    Neuron; 1992 Aug; 9(2):307-13. PubMed ID: 1379820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.