These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 7516806)

  • 1. Design and fabrication of biodegradable polymer devices to engineer tubular tissues.
    Mooney DJ; Organ G; Vacanti JP; Langer R
    Cell Transplant; 1994; 3(2):203-10. PubMed ID: 7516806
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilized polyglycolic acid fibre-based tubes for tissue engineering.
    Mooney DJ; Mazzoni CL; Breuer C; McNamara K; Hern D; Vacanti JP; Langer R
    Biomaterials; 1996 Jan; 17(2):115-24. PubMed ID: 8624388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabricating tubular devices from polymers of lactic and glycolic Acid for tissue engineering.
    Mooney DJ; Breuer C; McNamara K; Vacanti JP; Langer R
    Tissue Eng; 1995; 1(2):107-18. PubMed ID: 19877920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angiopolarity of cell carriers: directional angiogenesis in resorbable liver cell transplantation devices.
    Wintermantel E; Cima L; Schloo B; Langer R
    EXS; 1992; 61():331-4. PubMed ID: 1377553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies of brush border enzymes, basement membrane components, and electrophysiology of tissue-engineered neointestine.
    Choi RS; Riegler M; Pothoulakis C; Kim BS; Mooney D; Vacanti M; Vacanti JP
    J Pediatr Surg; 1998 Jul; 33(7):991-6; discussion 996-7. PubMed ID: 9694083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of pliable biodegradable polymer foams to engineer soft tissues.
    Wake MC; Gupta PK; Mikos AG
    Cell Transplant; 1996; 5(4):465-73. PubMed ID: 8800514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-term engraftment of hepatocytes transplanted on biodegradable polymer sponges.
    Mooney DJ; Sano K; Kaufmann PM; Majahod K; Schloo B; Vacanti JP; Langer R
    J Biomed Mater Res; 1997 Dec; 37(3):413-20. PubMed ID: 9368146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable sponges for hepatocyte transplantation.
    Mooney DJ; Park S; Kaufmann PM; Sano K; McNamara K; Vacanti JP; Langer R
    J Biomed Mater Res; 1995 Aug; 29(8):959-65. PubMed ID: 7593039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regenerative signals for intestinal epithelial organoid units transplanted on biodegradable polymer scaffolds for tissue engineering of small intestine.
    Kim SS; Kaihara S; Benvenuto MS; Choi RS; Kim BS; Mooney DJ; Taylor GA; Vacanti JP
    Transplantation; 1999 Jan; 67(2):227-33. PubMed ID: 10075585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Successful anastomosis between tissue-engineered intestine and native small bowel.
    Kaihara S; Kim SS; Benvenuto M; Choi R; Kim BS; Mooney D; Tanaka K; Vacanti JP
    Transplantation; 1999 Jan; 67(2):241-5. PubMed ID: 10075587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of polyester scaffolds for bioengineered intestinal mucosa.
    Chen DC; Avansino JR; Agopian VG; Hoagland VD; Woolman JD; Pan S; Ratner BD; Stelzner M
    Cells Tissues Organs; 2006; 184(3-4):154-65. PubMed ID: 17409741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elastic biodegradable poly(glycolide-co-caprolactone) scaffold for tissue engineering.
    Lee SH; Kim BS; Kim SH; Choi SW; Jeong SI; Kwon IK; Kang SW; Nikolovski J; Mooney DJ; Han YK; Kim YH
    J Biomed Mater Res A; 2003 Jul; 66(1):29-37. PubMed ID: 12833428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaffolding for challenging environments: materials selection for tissue engineered intestine.
    Boomer L; Liu Y; Mahler N; Johnson J; Zak K; Nelson T; Lannutti J; Besner GE
    J Biomed Mater Res A; 2014 Nov; 102(11):3795-802. PubMed ID: 24288210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manufacture and characterization of poly(alpha-hydroxy ester) thin films as temporary substrates for retinal pigment epithelium cells.
    Thomson RC; Giordano GG; Collier JH; Ishaug SL; Mikos AG; Lahiri-Munir D; Garcia CA
    Biomaterials; 1996 Feb; 17(3):321-7. PubMed ID: 8745329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pore morphology effects on the fibrovascular tissue growth in porous polymer substrates.
    Wake MC; Patrick CW; Mikos AG
    Cell Transplant; 1994; 3(4):339-43. PubMed ID: 7522866
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Macroporous polymer foams by hydrocarbon templating.
    Shastri VP; Martin I; Langer R
    Proc Natl Acad Sci U S A; 2000 Feb; 97(5):1970-5. PubMed ID: 10696111
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of fibrous biodegradable polymer conduits for guided nerve regeneration.
    Bini TB; Gao S; Wang S; Ramakrishna S
    J Mater Sci Mater Med; 2005 Apr; 16(4):367-75. PubMed ID: 15803283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of omentum as an in vivo cell culture system in tissue engineering.
    Suh S; Kim J; Shin J; Kil K; Kim K; Kim H; Kim J
    ASAIO J; 2004; 50(5):464-7. PubMed ID: 15497386
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of technologies aiding large-tissue engineering.
    Eiselt P; Kim BS; Chacko B; Isenberg B; Peters MC; Greene KG; Roland WD; Loebsack AB; Burg KJ; Culberson C; Halberstadt CR; Holder WD; Mooney DJ
    Biotechnol Prog; 1998; 14(1):134-40. PubMed ID: 9496678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regeneration of dentine/pulp-like tissue using a dental pulp stem cell/poly(lactic-co-glycolic) acid scaffold construct in New Zealand white rabbits.
    El-Backly RM; Massoud AG; El-Badry AM; Sherif RA; Marei MK
    Aust Endod J; 2008 Aug; 34(2):52-67. PubMed ID: 18666990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.