These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
316 related articles for article (PubMed ID: 7516854)
1. In vitro metabolism of L-696,229, an HIV-1 reverse transcriptase inhibitor in rats and humans. Hepatic and extrahepatic metabolism and identification of enzymes involved in the hepatic metabolism. Prueksaritanont T; Dwyer LM; Balani SK; Theoharides AD Drug Metab Dispos; 1994; 22(2):281-8. PubMed ID: 7516854 [TBL] [Abstract][Full Text] [Related]
2. Metabolism of 3-[2-(benzoxazol-2-yl)ethyl]-5-ethyl-6-methylpyridin-2 (1H)-one (L-696,229), an HIV-1 reverse transcriptase inhibitor, by rat liver slices and in humans. Balani SK; Kauffman LR; Arison BH; Olah TV; Goldman ME; Varga SL; O'Brien JA; Ramjit HG; Rooney CS; Hoffman JM Drug Metab Dispos; 1994; 22(2):200-5. PubMed ID: 7516852 [TBL] [Abstract][Full Text] [Related]
3. Stereoselective metabolism of cibenzoline, an antiarrhythmic drug, by human and rat liver microsomes: possible involvement of CYP2D and CYP3A. Niwa T; Shiraga T; Mitani Y; Terakawa M; Tokuma Y; Kagayama A Drug Metab Dispos; 2000 Sep; 28(9):1128-34. PubMed ID: 10950860 [TBL] [Abstract][Full Text] [Related]
4. Metabolism of a new HIV-1 reverse transcriptase inhibitor, 3-[2-(benzoxazol-2-yl)ethyl]-5-ethyl-6-methylpyridin-2(1H)-one (L-696,229), in rat and liver slices. Balani SK; Pitzenberger SM; Kauffman LR; Arison BH; Ramjit HG; Goldman ME; O'Brien JA; King JD; Hoffman JM; Rooney CS Drug Metab Dispos; 1992; 20(6):869-76. PubMed ID: 1283569 [TBL] [Abstract][Full Text] [Related]
5. Species differences in the metabolism of a potent HIV-1 reverse transcriptase inhibitor L-738,372. In vivo and in vitro studies in rats, dogs, monkeys, and human. Prueksaritanont T; Balani SK; Dwyer LM; Ellis JD; Kauffman LR; Varga SL; Pitzenberger SM; Theoharides AD Drug Metab Dispos; 1995 Jul; 23(7):688-95. PubMed ID: 7587955 [TBL] [Abstract][Full Text] [Related]
6. In vitro metabolism of chlorotriazines: characterization of simazine, atrazine, and propazine metabolism using liver microsomes from rats treated with various cytochrome P450 inducers. Hanioka N; Jinno H; Tanaka-Kagawa T; Nishimura T; Ando M Toxicol Appl Pharmacol; 1999 May; 156(3):195-205. PubMed ID: 10222312 [TBL] [Abstract][Full Text] [Related]
7. Metabolism of the antimammary cancer antiestrogenic agent tamoxifen. I. Cytochrome P-450-catalyzed N-demethylation and 4-hydroxylation. Mani C; Gelboin HV; Park SS; Pearce R; Parkinson A; Kupfer D Drug Metab Dispos; 1993; 21(4):645-56. PubMed ID: 8104124 [TBL] [Abstract][Full Text] [Related]
8. Identification of cytochrome P-450 isoforms responsible for cis-tramadol metabolism in human liver microsomes. Subrahmanyam V; Renwick AB; Walters DG; Young PJ; Price RJ; Tonelli AP; Lake BG Drug Metab Dispos; 2001 Aug; 29(8):1146-55. PubMed ID: 11454734 [TBL] [Abstract][Full Text] [Related]
9. Monoclonal antibody-directed analysis of benzo[a]pyrene metabolism in rat liver and extrahepatic tissues: effect of propyl and octyl gallate. Gnojkowski J; Krajka-Kuźniak V; Baer-Dubowska W Nutr Cancer; 2001; 39(1):117-25. PubMed ID: 11588892 [TBL] [Abstract][Full Text] [Related]
10. Studies on cytochrome P-450-mediated bioactivation of diclofenac in rats and in human hepatocytes: identification of glutathione conjugated metabolites. Tang W; Stearns RA; Bandiera SM; Zhang Y; Raab C; Braun MP; Dean DC; Pang J; Leung KH; Doss GA; Strauss JR; Kwei GY; Rushmore TH; Chiu SH; Baillie TA Drug Metab Dispos; 1999 Mar; 27(3):365-72. PubMed ID: 10064567 [TBL] [Abstract][Full Text] [Related]
11. Biotransformation of 6-methoxy-3-(3',4',5'-trimethoxy-benzoyl)-1H-indole (BPR0L075), a novel antimicrotubule agent, by mouse, rat, dog, and human liver microsomes. Yao HT; Wu YS; Chang YW; Hsieh HP; Chen WC; Lan SJ; Chen CT; Chao YS; Chang L; Sun HY; Yeh TK Drug Metab Dispos; 2007 Jul; 35(7):1042-9. PubMed ID: 17403915 [TBL] [Abstract][Full Text] [Related]
12. Regioselectivity and stereoselectivity in the metabolism of trans-1,2-dihydroxy-1,2-dihydrobenz[a]anthracene by rat liver microsomes. Vyas KP; van Bladeren PJ; Thakker DR; Yagi H; Sayer JM; Levin W; Jerina DM Mol Pharmacol; 1983 Jul; 24(1):115-23. PubMed ID: 6865920 [TBL] [Abstract][Full Text] [Related]
13. Characterization of enzymes responsible for biotransformation of the new antileukotrienic drug quinlukast in rat liver microsomes and in primary cultures of rat hepatocytes. Szotáková B; Skálová L; Baliharová V; Dvorscáková M; Storkánová L; Sispera L; Wsól V J Pharm Pharmacol; 2004 Feb; 56(2):205-12. PubMed ID: 15005879 [TBL] [Abstract][Full Text] [Related]
14. Role of rat liver cytochrome P450 3A and 2D in metabolism of imrecoxib. Xu HY; Xie ZY; Zhang P; Sun J; Chu FM; Guo ZR; Zhong DF Acta Pharmacol Sin; 2006 Mar; 27(3):372-80. PubMed ID: 16490176 [TBL] [Abstract][Full Text] [Related]
15. Metabolism of dimethyl-4,4'-dimethoxy-5,6,5',6'-dimethylene dioxybiphenyl-2,2'-dicarboxylate (DDB) by human liver microsomes: characterization of metabolic pathways and of cytochrome P450 isoforms involved. Baek MS; Kim JY; Myung SW; Yim YH; Jeong JH; Kim DH Drug Metab Dispos; 2001 Apr; 29(4 Pt 1):381-8. PubMed ID: 11259320 [TBL] [Abstract][Full Text] [Related]
16. Metabolism of halazepam by rat liver microsomes: stereoselective formation and N-dealkylation of 3-hydroxyhalazepam. Lu XL; Yang SK Chirality; 1990; 2(1):1-9. PubMed ID: 2400636 [TBL] [Abstract][Full Text] [Related]
17. Novel metabolites of buprenorphine detected in human liver microsomes and human urine. Chang Y; Moody DE; McCance-Katz EF Drug Metab Dispos; 2006 Mar; 34(3):440-8. PubMed ID: 16381669 [TBL] [Abstract][Full Text] [Related]
18. Cyclosporine metabolism by rat liver microsomes. Evidence for involvement of enzyme(s) other than cytochromes P-450 3A. Prueksaritanont T; Correia MA; Rettie AE; Swinney DC; Thomas PE; Benet LZ Drug Metab Dispos; 1993; 21(4):730-7. PubMed ID: 8104135 [TBL] [Abstract][Full Text] [Related]
19. In vitro metabolism of simvastatin in humans [SBT]identification of metabolizing enzymes and effect of the drug on hepatic P450s. Prueksaritanont T; Gorham LM; Ma B; Liu L; Yu X; Zhao JJ; Slaughter DE; Arison BH; Vyas KP Drug Metab Dispos; 1997 Oct; 25(10):1191-9. PubMed ID: 9321523 [TBL] [Abstract][Full Text] [Related]
20. Metabolism of capsaicin by cytochrome P450 produces novel dehydrogenated metabolites and decreases cytotoxicity to lung and liver cells. Reilly CA; Ehlhardt WJ; Jackson DA; Kulanthaivel P; Mutlib AE; Espina RJ; Moody DE; Crouch DJ; Yost GS Chem Res Toxicol; 2003 Mar; 16(3):336-49. PubMed ID: 12641434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]