These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 7517038)

  • 1. Importance of nitric oxide for local increases of blood flow in rat cerebellar cortex during electrical stimulation.
    Akgören N; Fabricius M; Lauritzen M
    Proc Natl Acad Sci U S A; 1994 Jun; 91(13):5903-7. PubMed ID: 7517038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cerebral blood flow increases evoked by electrical stimulation of rat cerebellar cortex: relation to excitatory synaptic activity and nitric oxide synthesis.
    Akgören N; Dalgaard P; Lauritzen M
    Brain Res; 1996 Feb; 710(1-2):204-14. PubMed ID: 8963660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laminar analysis of activity-dependent increases of CBF in rat cerebellar cortex: dependence on synaptic strength.
    Akgören N; Mathiesen C; Rubin I; Lauritzen M
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1166-76. PubMed ID: 9321803
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitric oxide is the predominant mediator of cerebellar hyperemia during somatosensory activation in rats.
    Yang G; Chen G; Ebner TJ; Iadecola C
    Am J Physiol; 1999 Dec; 277(6):R1760-70. PubMed ID: 10600924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex.
    Mathiesen C; Caesar K; Akgören N; Lauritzen M
    J Physiol; 1998 Oct; 512 ( Pt 2)(Pt 2):555-66. PubMed ID: 9763643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitric oxide contributes to functional hyperemia in cerebellar cortex.
    Iadecola C; Li J; Ebner TJ; Xu X
    Am J Physiol; 1995 May; 268(5 Pt 2):R1153-62. PubMed ID: 7539595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebral blood flow during inhibition of brain nitric oxide synthase activity in normal, hypertensive, and stroke-prone rats.
    Izuta M; Clavier N; Kirsch JR; Traystman RJ
    Stroke; 1995 Jun; 26(6):1079-85. PubMed ID: 7539167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Examination of the role of nitric oxide for the hypercapnic rise of cerebral blood flow in rats.
    Fabricius M; Lauritzen M
    Am J Physiol; 1994 Apr; 266(4 Pt 2):H1457-64. PubMed ID: 8184923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arginine-nitric oxide pathway and cerebrovascular regulation in cortical spreading depression.
    Fabricius M; Akgoren N; Lauritzen M
    Am J Physiol; 1995 Jul; 269(1 Pt 2):H23-9. PubMed ID: 7631852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activation of cerebellar climbing fibers increases cerebellar blood flow: role of glutamate receptors, nitric oxide, and cGMP.
    Yang G; Iadecola C
    Stroke; 1998 Feb; 29(2):499-507; discussion 507-8. PubMed ID: 9472896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nitric oxide-dependent and -independent components of cerebrovasodilation elicited by hypercapnia.
    Iadecola C; Zhang F
    Am J Physiol; 1994 Feb; 266(2 Pt 2):R546-52. PubMed ID: 7511352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear neurovascular coupling in rat sensory cortex by activation of transcallosal fibers.
    Hoffmeyer HW; Enager P; Thomsen KJ; Lauritzen MJ
    J Cereb Blood Flow Metab; 2007 Mar; 27(3):575-87. PubMed ID: 16896350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypoxia, alpha 2-adrenergic, and nitric oxide-dependent interactions on canine cerebral blood flow.
    McPherson RW; Koehler RC; Traystman RJ
    Am J Physiol; 1994 Feb; 266(2 Pt 2):H476-82. PubMed ID: 7511347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coupling of cerebral blood flow to neuronal activation: role of adenosine and nitric oxide.
    Dirnagl U; Niwa K; Lindauer U; Villringer A
    Am J Physiol; 1994 Jul; 267(1 Pt 2):H296-301. PubMed ID: 8048594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Major role of nitric oxide in the mediation of regional CO2 responsiveness of the cerebral and spinal cord vessels of the cat.
    Sandor P; Komjati K; Reivich M; Nyary I
    J Cereb Blood Flow Metab; 1994 Jan; 14(1):49-58. PubMed ID: 7505282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of nitric oxide in the modulation of dural arterial blood flow in the rat.
    Messlinger K; Suzuki A; Pawlak M; Zehnter A; Schmidt RF
    Br J Pharmacol; 2000 Apr; 129(7):1397-404. PubMed ID: 10742295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. L-arginine infusion promotes nitric oxide-dependent vasodilation, increases regional cerebral blood flow, and reduces infarction volume in the rat.
    Morikawa E; Moskowitz MA; Huang Z; Yoshida T; Irikura K; Dalkara T
    Stroke; 1994 Feb; 25(2):429-35. PubMed ID: 7508154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitric oxide synthase is critical in mediating basal forebrain regulation of cortical cerebral circulation.
    Raszkiewicz JL; Linville DG; Kerwin JF; Wagenaar F; Arneric SP
    J Neurosci Res; 1992 Sep; 33(1):129-35. PubMed ID: 1280688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dose-related effects of nitric oxide synthase inhibition on cerebral blood flow during isoflurane and pentobarbital anesthesia.
    Todd MM; Wu B; Warner DS; Maktabi M
    Anesthesiology; 1994 May; 80(5):1128-36. PubMed ID: 7517107
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitric oxide (NO) is an endogenous anticonvulsant but not a mediator of the increase in cerebral blood flow accompanying bicuculline-induced seizures in rats.
    Wang Q; Theard MA; Pelligrino DA; Baughman VL; Hoffman WE; Albrecht RF; Cwik M; Paulson OB; Lassen NA
    Brain Res; 1994 Sep; 658(1-2):192-8. PubMed ID: 7530579
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.