BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 7517410)

  • 1. A study of SMI 32-stained pyramidal cells, parvalbumin-immunoreactive chandelier cells, and presumptive thalamocortical axons in the human temporal neocortex.
    Del Río MR; DeFelipe J
    J Comp Neurol; 1994 Apr; 342(3):389-408. PubMed ID: 7517410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The synaptology of parvalbumin-immunoreactive neurons in the primate prefrontal cortex.
    Williams SM; Goldman-Rakic PS; Leranth C
    J Comp Neurol; 1992 Jun; 320(3):353-69. PubMed ID: 1613130
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electron microscopic immunocytochemical study of the distribution of parvalbumin-containing neurons and axon terminals in the primate dentate gyrus and Ammon's horn.
    Ribak CE; Seress L; Leranth C
    J Comp Neurol; 1993 Jan; 327(2):298-321. PubMed ID: 8425946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chandelier cell axons identified by parvalbumin-immunoreactivity in the normal human temporal cortex and in Alzheimer's disease.
    Fonseca M; Soriano E; Ferrer I; Martinez A; Tuñon T
    Neuroscience; 1993 Aug; 55(4):1107-16. PubMed ID: 8232900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus.
    Arellano JI; Muñoz A; Ballesteros-Yáñez I; Sola RG; DeFelipe J
    Brain; 2004 Jan; 127(Pt 1):45-64. PubMed ID: 14534159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distribution of parvalbumin-immunoreactive cells and fibers in the monkey temporal lobe: the hippocampal formation.
    Pitkänen A; Amaral DG
    J Comp Neurol; 1993 May; 331(1):37-74. PubMed ID: 8320348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distribution, morphological features, and synaptic connections of parvalbumin- and calbindin D28k-immunoreactive neurons in the human hippocampal formation.
    Seress L; Gulyás AI; Ferrer I; Tunon T; Soriano E; Freund TF
    J Comp Neurol; 1993 Nov; 337(2):208-30. PubMed ID: 8276998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variability in the terminations of GABAergic chandelier cell axons on initial segments of pyramidal cell axons in the monkey sensory-motor cortex.
    DeFelipe J; Hendry SH; Jones EG; Schmechel D
    J Comp Neurol; 1985 Jan; 231(3):364-84. PubMed ID: 2981907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parvalbumin in the human anterior cingulate cortex: morphological heterogeneity of inhibitory interneurons.
    Kalus P; Senitz D
    Brain Res; 1996 Aug; 729(1):45-54. PubMed ID: 8874875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light and electron microscopic characterization of dopamine-immunoreactive axons in human cerebral cortex.
    Smiley JF; Williams SM; Szigeti K; Goldman-Rakic PS
    J Comp Neurol; 1992 Jul; 321(3):325-35. PubMed ID: 1506472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serotonin-immunoreactive axon terminals innervate pyramidal cells and interneurons in the rat basolateral amygdala.
    Muller JF; Mascagni F; McDonald AJ
    J Comp Neurol; 2007 Nov; 505(3):314-35. PubMed ID: 17879281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneity of chandelier neurons in monkey neocortex: corticotropin-releasing factor- and parvalbumin-immunoreactive populations.
    Lewis DA; Lund JS
    J Comp Neurol; 1990 Mar; 293(4):599-615. PubMed ID: 2329196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surviving CA1 pyramidal cells receive intact perisomatic inhibitory input in the human epileptic hippocampus.
    Wittner L; Eross L; Czirják S; Halász P; Freund TF; Maglóczky Z
    Brain; 2005 Jan; 128(Pt 1):138-52. PubMed ID: 15548550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Architectural (Type IA) focal cortical dysplasia and parvalbumin immunostaining in temporal lobe epilepsy.
    Garbelli R; Meroni A; Magnaghi G; Beolchi MS; Ferrario A; Tassi L; Bramerio M; Spreafico R
    Epilepsia; 2006 Jun; 47(6):1074-8. PubMed ID: 16822257
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quantitative analysis of parvalbumin neurons in rabbit auditory neocortex.
    McMullen NT; Smelser CB; de Venecia RK
    J Comp Neurol; 1994 Nov; 349(4):493-511. PubMed ID: 7860786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chandelier cell axons are immunoreactive for GAT-1 in the human neocortex.
    DeFelipe J; González-Albo MC
    Neuroreport; 1998 Feb; 9(3):467-70. PubMed ID: 9512391
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monoclonal antibody to neurofilament protein (SMI-32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex.
    Campbell MJ; Morrison JH
    J Comp Neurol; 1989 Apr; 282(2):191-205. PubMed ID: 2496154
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visualization of chandelier cell axons by parvalbumin immunoreactivity in monkey cerebral cortex.
    DeFelipe J; Hendry SH; Jones EG
    Proc Natl Acad Sci U S A; 1989 Mar; 86(6):2093-7. PubMed ID: 2648389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parvalbumin-immunoreactive axon terminals in macaque monkey and human prefrontal cortex: laminar, regional, and target specificity of type I and type II synapses.
    Melchitzky DS; Sesack SR; Lewis DA
    J Comp Neurol; 1999 May; 408(1):11-22. PubMed ID: 10331577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential distribution of parvalbumin-immunoreactive pericellular clusters of terminal boutons in developing and adult monkey neocortex.
    Akil M; Lewis DA
    Exp Neurol; 1992 Feb; 115(2):239-49. PubMed ID: 1735469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.