These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 7517410)

  • 41. Postnatal development of parvalbumin- and GABA transporter-immunoreactive axon terminals in monkey prefrontal cortex.
    Erickson SL; Lewis DA
    J Comp Neurol; 2002 Jun; 448(2):186-202. PubMed ID: 12012429
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Distribution of cytochrome oxidase and parvalbumin in the primary visual cortex of the adult and neonate monkey, Callithrix jacchus.
    Spatz WB; Illing RB; Weisenhorn DM
    J Comp Neurol; 1994 Jan; 339(4):519-34. PubMed ID: 8144744
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cortical selective vulnerability in motor neuron disease: a morphometric study.
    Maekawa S; Al-Sarraj S; Kibble M; Landau S; Parnavelas J; Cotter D; Everall I; Leigh PN
    Brain; 2004 Jun; 127(Pt 6):1237-51. PubMed ID: 15130949
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Colocalization of parvalbumin and calbindin D-28k in neurons including chandelier cells of the human temporal neocortex.
    del Río MR; DeFelipe J
    J Chem Neuroanat; 1997 Mar; 12(3):165-73. PubMed ID: 9141648
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Thalamocortical synapses of pyramidal cells which project from SmI to MsI cortex in the mouse.
    White EL; Hersch SM
    J Comp Neurol; 1981 May; 198(1):167-81. PubMed ID: 7229139
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Cellular localization of adenosine A1 receptors in rat forebrain: immunohistochemical analysis using adenosine A1 receptor-specific monoclonal antibody.
    Ochiishi T; Chen L; Yukawa A; Saitoh Y; Sekino Y; Arai T; Nakata H; Miyamoto H
    J Comp Neurol; 1999 Aug; 411(2):301-16. PubMed ID: 10404255
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Regional analysis of neurofilament protein immunoreactivity in the hamster's cortex.
    Boire D; Desgent S; Matteau I; Ptito M
    J Chem Neuroanat; 2005 May; 29(3):193-208. PubMed ID: 15820621
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Local circuit neurons immunoreactive for calretinin, calbindin D-28k or parvalbumin in monkey prefrontal cortex: distribution and morphology.
    Condé F; Lund JS; Jacobowitz DM; Baimbridge KG; Lewis DA
    J Comp Neurol; 1994 Mar; 341(1):95-116. PubMed ID: 8006226
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Selective changes in the microorganization of the human epileptogenic neocortex revealed by parvalbumin immunoreactivity.
    DeFelipe J; Garcia Sola R; Marco P; del Río MR; Pulido P; Ramón y Cajal S
    Cereb Cortex; 1993; 3(1):39-48. PubMed ID: 7679938
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Calcium-binding proteins in the human developing brain.
    Ulfig N
    Adv Anat Embryol Cell Biol; 2002; 165():III-IX, 1-92. PubMed ID: 12236093
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier cells.
    Inda MC; DeFelipe J; Muñoz A
    Proc Natl Acad Sci U S A; 2006 Feb; 103(8):2920-5. PubMed ID: 16473933
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Postnatal development of pre- and postsynaptic GABA markers at chandelier cell connections with pyramidal neurons in monkey prefrontal cortex.
    Cruz DA; Eggan SM; Lewis DA
    J Comp Neurol; 2003 Oct; 465(3):385-400. PubMed ID: 12966563
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Loss of GABAergic neurons in the subiculum and its functional implications in temporal lobe epilepsy.
    Knopp A; Frahm C; Fidzinski P; Witte OW; Behr J
    Brain; 2008 Jun; 131(Pt 6):1516-27. PubMed ID: 18504292
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neurochemical features and synaptic connections of large physiologically-identified GABAergic cells in the rat frontal cortex.
    Kawaguchi Y; Kubota Y
    Neuroscience; 1998 Aug; 85(3):677-701. PubMed ID: 9639265
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A novel population of calretinin-positive neurons comprises reelin-positive Cajal-Retzius cells in the hippocampal formation of the adult domestic pig.
    Abrahám H; Tóth Z; Seress L
    Hippocampus; 2004; 14(3):385-401. PubMed ID: 15132437
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Loss of interneurons innervating pyramidal cell dendrites and axon initial segments in the CA1 region of the hippocampus following pilocarpine-induced seizures.
    Dinocourt C; Petanjek Z; Freund TF; Ben-Ari Y; Esclapez M
    J Comp Neurol; 2003 May; 459(4):407-25. PubMed ID: 12687707
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Synaptic targets of calretinin-containing axon terminals in macaque monkey prefrontal cortex.
    Melchitzky DS; Eggan SM; Lewis DA
    Neuroscience; 2005; 130(1):185-95. PubMed ID: 15561434
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chandelier cells in the hippocampal formation of the rat: the entorhinal area and subicular complex.
    Soriano E; Martinez A; Farińas I; Frotscher M
    J Comp Neurol; 1993 Nov; 337(1):151-67. PubMed ID: 8276990
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Information processing within the motor cortex. II. Intracortical connections between neurons receiving somatosensory cortical input and motor output neurons of the cortex.
    Kaneko T; Caria MA; Asanuma H
    J Comp Neurol; 1994 Jul; 345(2):172-84. PubMed ID: 7929898
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Chandelier cells and epilepsy.
    DeFelipe J
    Brain; 1999 Oct; 122 ( Pt 10)():1807-22. PubMed ID: 10506085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.