BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 7517792)

  • 1. Influence of arterial diameter on vasomotor responses in the porcine coronary vasculature.
    Bund SJ; Oldham AA; Heagerty AM
    Cardiovasc Res; 1994 May; 28(5):695-9. PubMed ID: 7517792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Different potency of endothelium-derived relaxing factors against thromboxane, endothelin, and potassium chloride in intramyocardial porcine coronary arteries.
    Noll G; Bühler FR; Yang Z; Lüscher TF
    J Cardiovasc Pharmacol; 1991 Jul; 18(1):120-6. PubMed ID: 1719280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vasodilator responses to acetylcholine, bradykinin, and substance P are mediated by a TEA-sensitive mechanism.
    Champion HC; Kadowitz PJ
    Am J Physiol; 1997 Jul; 273(1 Pt 2):R414-22. PubMed ID: 9249580
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Endothelium-dependent relaxation by substance P in human isolated omental arteries and veins: relative contribution of prostanoids, nitric oxide and hyperpolarization.
    Wallerstedt SM; Bodelsson M
    Br J Pharmacol; 1997 Jan; 120(1):25-30. PubMed ID: 9117094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulmonary versus systemic effects of vasodilator drugs: an in vitro study in isolated intrapulmonary and mesenteric arteries of neonatal piglets.
    Pérez-Vizcaíno F; Villamor E; Moro M; Tamargo J
    Eur J Pharmacol; 1996 Oct; 314(1-2):91-8. PubMed ID: 8957223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Different involvement of nitric oxide in endothelium-dependent relaxation of porcine pulmonary artery and vein: influence of hypoxia.
    Félétou M; Girard V; Canet E
    J Cardiovasc Pharmacol; 1995 Apr; 25(4):665-73. PubMed ID: 7596137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of myoendothelial cell contact in non-nitric oxide-, non-prostanoid-mediated endothelium-dependent relaxation of porcine coronary artery.
    Kühberger E; Groschner K; Kukovetz WR; Brunner F
    Br J Pharmacol; 1994 Dec; 113(4):1289-94. PubMed ID: 7889285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of protein kinase C in reduced relaxant responses to the NO/cyclic GMP pathway in piglet pulmonary arteries contracted by the thromboxane A2-mimetic U46619.
    Pérez-Vizcaíno F; Villamor E; Duarte J; Tamargo J
    Br J Pharmacol; 1997 Aug; 121(7):1323-33. PubMed ID: 9257910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of one-kidney, one clip hypertension on the structure and function of porcine intramyocardial small arteries.
    Bund SJ; Oldham AA; Allott CP; Loveday BE; Heagerty AM
    J Hypertens; 1995 May; 13(5):535-41. PubMed ID: 7561011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lack of endotoxin-induced hyporesponsiveness to U46619 in isolated neonatal porcine pulmonary but not mesenteric arteries.
    Pérez-Vizcaíno F; Villamor E; Fernandez del Pozo B; Moro M; Tamargo J
    J Vasc Res; 1996; 33(3):249-57. PubMed ID: 8924522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vasomotor responses of rat coronary arteries to isoflurane and halothane depend on preexposure tone and vessel size.
    Park KW; Dai HB; Lowenstein E; Sellke FW
    Anesthesiology; 1995 Dec; 83(6):1323-30. PubMed ID: 8533925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of contractile responses to 5-hydroxytryptamine and sumatriptan in human isolated coronary artery: synergy with the thromboxane A2-receptor agonist, U46619.
    Cocks TM; Kemp BK; Pruneau D; Angus JA
    Br J Pharmacol; 1993 Sep; 110(1):360-8. PubMed ID: 8220898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro responses of human peripheral small arteries in hypercholesterolemia and effects of therapy.
    Goode GK; Heagerty AM
    Circulation; 1995 Jun; 91(12):2898-903. PubMed ID: 7796498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological reactivity of human epicardial coronary arteries: characterization of relaxation responses to endothelium-derived relaxing factor.
    Stork AP; Cocks TM
    Br J Pharmacol; 1994 Dec; 113(4):1099-104. PubMed ID: 7889260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basic FGF enhances endothelium-dependent relaxation of the collateral-perfused coronary microcirculation.
    Sellke FW; Wang SY; Friedman M; Harada K; Edelman ER; Grossman W; Simons M
    Am J Physiol; 1994 Oct; 267(4 Pt 2):H1303-11. PubMed ID: 7943375
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endothelium-derived relaxing factor and cyclic GMP-dependent vasorelaxation in human chorionic plate arteries.
    Hull AD; White CR; Pearce WJ
    Placenta; 1994 Jun; 15(4):365-75. PubMed ID: 7524060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms causing coronary microvascular dysfunction following crystalloid cardioplegia and reperfusion.
    Sellke FW; Friedman M; Dai HB; Shafique T; Schoen FJ; Weintraub RM; Johnson RG
    Cardiovasc Res; 1993 Nov; 27(11):1925-32. PubMed ID: 8287398
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of group B Streptococcus on the responses to U46619, endothelin-1, and noradrenaline in isolated pulmonary and mesenteric arteries of piglets.
    Villamor E; Pérez Vizcaíno F; Tamargo J; Moro M
    Pediatr Res; 1996 Dec; 40(6):827-33. PubMed ID: 8947958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of U46619 on contractions to 5-HT, sumatriptan and methysergide in canine coronary artery and saphenous vein in vitro.
    Kemp BK; Cocks TM
    Br J Pharmacol; 1995 Oct; 116(4):2183-90. PubMed ID: 8564247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Augmented contraction of the human isolated coronary artery by sumatriptan: a possible role for endogenous thromboxane.
    Maassen VanDenBrink A; Bax WA; Ferrari MD; Zijlstra FJ; Bos E; Saxena PR
    Br J Pharmacol; 1996 Nov; 119(5):855-62. PubMed ID: 8922732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.