These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 7517937)
1. The mechanism of translational coupling in Escherichia coli. Higher order structure in the atpHA mRNA acts as a conformational switch regulating the access of de novo initiating ribosomes. Rex G; Surin B; Besse G; Schneppe B; McCarthy JE J Biol Chem; 1994 Jul; 269(27):18118-27. PubMed ID: 7517937 [TBL] [Abstract][Full Text] [Related]
2. Independent and coupled translational initiation of atp genes in Escherichia coli: experiments using chromosomal and plasmid-borne lacZ fusions. Gerstel B; McCarthy JE Mol Microbiol; 1989 Jul; 3(7):851-9. PubMed ID: 2529415 [TBL] [Abstract][Full Text] [Related]
3. Translational coupling varying in efficiency between different pairs of genes in the central region of the atp operon of Escherichia coli. Hellmuth K; Rex G; Surin B; Zinck R; McCarthy JE Mol Microbiol; 1991 Apr; 5(4):813-24. PubMed ID: 1830358 [TBL] [Abstract][Full Text] [Related]
4. Importance of mRNA folding and start codon accessibility in the expression of genes in a ribosomal protein operon of Escherichia coli. Wikström PM; Lind LK; Berg DE; Björk GR J Mol Biol; 1992 Apr; 224(4):949-66. PubMed ID: 1569581 [TBL] [Abstract][Full Text] [Related]
5. An unstructured mRNA region and a 5' hairpin represent important elements of the E. coli translation initiation signal determined by using the bacteriophage T7 gene 1 translation start site. Helke A; Geisen RM; Vollmer M; Sprengart ML; Fuchs E Nucleic Acids Res; 1993 Dec; 21(24):5705-11. PubMed ID: 8284218 [TBL] [Abstract][Full Text] [Related]
6. Post-transcriptional regulation of the str operon in Escherichia coli. Structural and mutational analysis of the target site for translational repressor S7. Saito K; Nomura M J Mol Biol; 1994 Jan; 235(1):125-39. PubMed ID: 8289236 [TBL] [Abstract][Full Text] [Related]
7. Messenger RNA secondary structure and translational coupling in the Escherichia coli operon encoding translation initiation factor IF3 and the ribosomal proteins, L35 and L20. Lesage P; Chiaruttini C; Graffe M; Dondon J; Milet M; Springer M J Mol Biol; 1992 Nov; 228(2):366-86. PubMed ID: 1453449 [TBL] [Abstract][Full Text] [Related]
8. Novel Translation Initiation Regulation Mechanism in Escherichia coli ptrB Mediated by a 5'-Terminal AUG. Beck HJ; Janssen GR J Bacteriol; 2017 Jul; 199(14):. PubMed ID: 28484048 [TBL] [Abstract][Full Text] [Related]
9. Translational Repression of the RpoS Antiadapter IraD by CsrA Is Mediated via Translational Coupling to a Short Upstream Open Reading Frame. Park H; McGibbon LC; Potts AH; Yakhnin H; Romeo T; Babitzke P mBio; 2017 Aug; 8(4):. PubMed ID: 28851853 [TBL] [Abstract][Full Text] [Related]
10. The role of bases upstream of the Shine-Dalgarno region and in the coding sequence in the control of gene expression in Escherichia coli: translation and stability of mRNAs in vivo. Schauder B; McCarthy JE Gene; 1989 May; 78(1):59-72. PubMed ID: 2475391 [TBL] [Abstract][Full Text] [Related]
11. The influence of ribosome-binding-site elements on translational efficiency in Bacillus subtilis and Escherichia coli in vivo. Vellanoweth RL; Rabinowitz JC Mol Microbiol; 1992 May; 6(9):1105-14. PubMed ID: 1375309 [TBL] [Abstract][Full Text] [Related]
12. trp RNA-binding attenuation protein-mediated long distance RNA refolding regulates translation of trpE in Bacillus subtilis. Du H; Babitzke P J Biol Chem; 1998 Aug; 273(32):20494-503. PubMed ID: 9685405 [TBL] [Abstract][Full Text] [Related]
13. Translational coupling in the Escherichia coli operon encoding translation initiation factor IF3 and ribosomal proteins L20 and L35. Chiaruttini C; Milet M; de Smit M; Springer M Biochimie; 1996; 78(7):555-67. PubMed ID: 8955899 [TBL] [Abstract][Full Text] [Related]
14. Ribosomal affinity and translational initiation in Escherichia coli. In vitro investigations using translational initiation regions of differing efficiencies from the atp operon. Lang V; Gualerzi C; McCarthy JE J Mol Biol; 1989 Dec; 210(3):659-63. PubMed ID: 2693739 [TBL] [Abstract][Full Text] [Related]
15. A uridine-rich sequence required for translation of prokaryotic mRNA. Zhang J; Deutscher MP Proc Natl Acad Sci U S A; 1992 Apr; 89(7):2605-9. PubMed ID: 1372983 [TBL] [Abstract][Full Text] [Related]
16. Translation of the first gene of the Escherichia coli unc operon. Selection of the start codon and control of initiation efficiency. Schneppe B; Deckers-Hebestreit G; McCarthy JE; Altendorf K J Biol Chem; 1991 Nov; 266(31):21090-8. PubMed ID: 1834655 [TBL] [Abstract][Full Text] [Related]
17. Translation initiation in Escherichia coli: sequences within the ribosome-binding site. Ringquist S; Shinedling S; Barrick D; Green L; Binkley J; Stormo GD; Gold L Mol Microbiol; 1992 May; 6(9):1219-29. PubMed ID: 1375310 [TBL] [Abstract][Full Text] [Related]
18. Influences on gene expression in vivo by a Shine-Dalgarno sequence. Jin H; Zhao Q; Gonzalez de Valdivia EI; Ardell DH; Stenström M; Isaksson LA Mol Microbiol; 2006 Apr; 60(2):480-92. PubMed ID: 16573696 [TBL] [Abstract][Full Text] [Related]
20. Translational initiation on structured messengers. Another role for the Shine-Dalgarno interaction. de Smit MH; van Duin J J Mol Biol; 1994 Jan; 235(1):173-84. PubMed ID: 8289239 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]