BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 7517937)

  • 1. The mechanism of translational coupling in Escherichia coli. Higher order structure in the atpHA mRNA acts as a conformational switch regulating the access of de novo initiating ribosomes.
    Rex G; Surin B; Besse G; Schneppe B; McCarthy JE
    J Biol Chem; 1994 Jul; 269(27):18118-27. PubMed ID: 7517937
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disruption of transcription-translation coordination in Escherichia coli leads to premature transcriptional termination.
    Zhu M; Mori M; Hwa T; Dai X
    Nat Microbiol; 2019 Dec; 4(12):2347-2356. PubMed ID: 31451774
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Translocation kinetics and structural dynamics of ribosomes are modulated by the conformational plasticity of downstream pseudoknots.
    Wu B; Zhang H; Sun R; Peng S; Cooperman BS; Goldman YE; Chen C
    Nucleic Acids Res; 2018 Oct; 46(18):9736-9748. PubMed ID: 30011005
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pervasive downstream RNA hairpins dynamically dictate start-codon selection.
    Xiang Y; Huang W; Tan L; Chen T; He Y; Irving PS; Weeks KM; Zhang QC; Dong X
    Nature; 2023 Sep; 621(7978):423-430. PubMed ID: 37674078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The distinct translational landscapes of gram-negative Salmonella and gram-positive Listeria.
    Bryant OJ; Lastovka F; Powell J; Chung BY
    Nat Commun; 2023 Dec; 14(1):8167. PubMed ID: 38071303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The ribosome as a small-molecule sensor.
    Bhattacharya A; Renault TT; Innis CA
    Curr Opin Microbiol; 2024 Feb; 77():102418. PubMed ID: 38159358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How synonymous mutations alter enzyme structure and function over long timescales.
    Jiang Y; Neti SS; Sitarik I; Pradhan P; To P; Xia Y; Fried SD; Booker SJ; O'Brien EP
    Nat Chem; 2023 Mar; 15(3):308-318. PubMed ID: 36471044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcription-Translation Coupling in Bacteria.
    Blaha GM; Wade JT
    Annu Rev Genet; 2022 Nov; 56():187-205. PubMed ID: 36055649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled Transcription-Translation in Prokaryotes: An Old Couple With New Surprises.
    Irastortza-Olaziregi M; Amster-Choder O
    Front Microbiol; 2020; 11():624830. PubMed ID: 33552035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Standardized annotation of translated open reading frames.
    Mudge JM; Ruiz-Orera J; Prensner JR; Brunet MA; Calvet F; Jungreis I; Gonzalez JM; Magrane M; Martinez TF; Schulz JF; Yang YT; Albà MM; Aspden JL; Baranov PV; Bazzini AA; Bruford E; Martin MJ; Calviello L; Carvunis AR; Chen J; Couso JP; Deutsch EW; Flicek P; Frankish A; Gerstein M; Hubner N; Ingolia NT; Kellis M; Menschaert G; Moritz RL; Ohler U; Roucou X; Saghatelian A; Weissman JS; van Heesch S
    Nat Biotechnol; 2022 Jul; 40(7):994-999. PubMed ID: 35831657
    [No Abstract]   [Full Text] [Related]  

  • 11. Cross-evaluation of E. coli's operon structures via a whole-cell model suggests alternative cellular benefits for low- versus high-expressing operons.
    Sun G; DeFelice MM; Gillies TE; Ahn-Horst TA; Andrews CJ; Krummenacker M; Karp PD; Morrison JH; Covert MW
    Cell Syst; 2024 Mar; 15(3):227-245.e7. PubMed ID: 38417437
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Panda S; Jayasinghe YP; Shinde DD; Bueno E; Stastny A; Bertrand BP; Chaudhari SS; Kielian T; Cava F; Ronning DR; Thomas VC
    bioRxiv; 2024 Jan; ():. PubMed ID: 38293037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unidirectional gene pairs in archaea and bacteria require overlaps or very short intergenic distances for translational coupling via termination-reinitiation and often encode subunits of heteromeric complexes.
    Huber M; Vogel N; Borst A; Pfeiffer F; Karamycheva S; Wolf YI; Koonin EV; Soppa J
    Front Microbiol; 2023; 14():1291523. PubMed ID: 38029211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct measurements of mRNA translation kinetics in living cells.
    Metelev M; Lundin E; Volkov IL; Gynnå AH; Elf J; Johansson M
    Nat Commun; 2022 Apr; 13(1):1852. PubMed ID: 35388013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The context of the ribosome binding site in mRNAs defines specificity of action of kasugamycin, an inhibitor of translation initiation.
    Zhang Y; Aleksashin NA; Klepacki D; Anderson C; Vázquez-Laslop N; Gross CA; Mankin AS
    Proc Natl Acad Sci U S A; 2022 Jan; 119(4):. PubMed ID: 35064089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bicistronic design as recombinant expression enhancer: characteristics, applications, and structural optimization.
    Sun M; Gao AX; Li A; Liu X; Wang R; Yang Y; Li Y; Liu C; Bai Z
    Appl Microbiol Biotechnol; 2021 Oct; 105(20):7709-7720. PubMed ID: 34596722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ComEB protein is dispensable for the transformation but must be translated for the optimal synthesis of comEC.
    De Santis M; Hahn J; Dubnau D
    Mol Microbiol; 2021 Jul; 116(1):71-79. PubMed ID: 33527432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ribosome recycling is not critical for translational coupling in
    Saito K; Green R; Buskirk AR
    Elife; 2020 Sep; 9():. PubMed ID: 32965213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Translational initiation in
    Saito K; Green R; Buskirk AR
    Elife; 2020 Feb; 9():. PubMed ID: 32065583
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.