These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. An antisense/target RNA duplex or a strong intramolecular RNA structure 5' of a translation initiation signal blocks ribosome binding: the case of plasmid R1. Malmgren C; Engdahl HM; Romby P; Wagner EG RNA; 1996 Oct; 2(10):1022-32. PubMed ID: 8849778 [TBL] [Abstract][Full Text] [Related]
23. Mechanism of translational coupling in the nifLA operon of Klebsiella pneumoniae. Govantes F; Andújar E; Santero E EMBO J; 1998 Apr; 17(8):2368-77. PubMed ID: 9545248 [TBL] [Abstract][Full Text] [Related]
24. Stem-Loop Structures within mRNA Coding Sequences Activate Translation Initiation and Mediate Control by Small Regulatory RNAs. Jagodnik J; Chiaruttini C; Guillier M Mol Cell; 2017 Oct; 68(1):158-170.e3. PubMed ID: 28918899 [TBL] [Abstract][Full Text] [Related]
25. Analysis of the role of the Shine-Dalgarno sequence and mRNA secondary structure on the efficiency of translational initiation in the Euglena gracilis chloroplast atpH mRNA. Betts L; Spremulli LL J Biol Chem; 1994 Oct; 269(42):26456-63. PubMed ID: 7929367 [TBL] [Abstract][Full Text] [Related]
26. Role of ribosome recycling factor (RRF) in translational coupling. Inokuchi Y; Hirashima A; Sekine Y; Janosi L; Kaji A EMBO J; 2000 Jul; 19(14):3788-98. PubMed ID: 10899132 [TBL] [Abstract][Full Text] [Related]
27. Evidence for allosteric coupling between the ribosome and repressor binding sites of a translationally regulated mRNA. Tang CK; Draper DE Biochemistry; 1990 May; 29(18):4434-9. PubMed ID: 2112408 [TBL] [Abstract][Full Text] [Related]
28. Inhibition of translation initiation on Escherichia coli gnd mRNA by formation of a long-range secondary structure involving the ribosome binding site and the internal complementary sequence. Chang JT; Green CB; Wolf RE J Bacteriol; 1995 Nov; 177(22):6560-7. PubMed ID: 7592434 [TBL] [Abstract][Full Text] [Related]
29. The effect of ribosomal protein S1 from Escherichia coli and Micrococcus luteus on protein synthesis in vitro by E. coli and Bacillus subtilis. Farwell MA; Roberts MW; Rabinowitz JC Mol Microbiol; 1992 Nov; 6(22):3375-83. PubMed ID: 1283001 [TBL] [Abstract][Full Text] [Related]
30. Some base substitutions in the leader of an Escherichia coli ribosomal RNA operon affect the structure and function of ribosomes. Evidence for a transient scaffold function of the rRNA leader. Theissen G; Thelen L; Wagner R J Mol Biol; 1993 Sep; 233(2):203-18. PubMed ID: 8377198 [TBL] [Abstract][Full Text] [Related]
31. Specialized ribosomes: highly specific translation in vivo of a single targetted mRNA species. Brink MF; Verbeet MP; de Boer HA Gene; 1995 Apr; 156(2):215-22. PubMed ID: 7758959 [TBL] [Abstract][Full Text] [Related]
32. An efficient Shine-Dalgarno sequence but not translation is necessary for lacZ mRNA stability in Escherichia coli. Wagner LA; Gesteland RF; Dayhuff TJ; Weiss RB J Bacteriol; 1994 Mar; 176(6):1683-8. PubMed ID: 7510674 [TBL] [Abstract][Full Text] [Related]
33. Post-transcriptional control in Escherichia coli: translation and degradation of the atp operon mRNA. McCarthy JE; Schauder B; Ziemke P Gene; 1988 Dec; 72(1-2):131-9. PubMed ID: 2907496 [TBL] [Abstract][Full Text] [Related]
34. Frameshifting in the synthesis of Escherichia coli polypeptide chain release factor two on eukaryotic ribosomes. Williams JM; Donly BC; Brown CM; Adamski FM; Trotman CN; Tate WP Eur J Biochem; 1989 Dec; 186(3):515-21. PubMed ID: 2691247 [TBL] [Abstract][Full Text] [Related]
35. Structured mRNAs regulate translation initiation by binding to the platform of the ribosome. Marzi S; Myasnikov AG; Serganov A; Ehresmann C; Romby P; Yusupov M; Klaholz BP Cell; 2007 Sep; 130(6):1019-31. PubMed ID: 17889647 [TBL] [Abstract][Full Text] [Related]
36. Multivalent translational control of transcription termination at attenuator of ilvGEDA operon of Escherichia coli K-12. Lawther RP; Hatfield GW Proc Natl Acad Sci U S A; 1980 Apr; 77(4):1862-6. PubMed ID: 6154938 [TBL] [Abstract][Full Text] [Related]
37. Inability of Agrobacterium tumefaciens ribosomes to translate in vivo mRNAs containing non-Shine-Dalgarno translational initiators. Golshani A; Xu J; Kolev V; Abouhaidar MG; Ivanov IG Z Naturforsch C J Biosci; 2002; 57(3-4):307-12. PubMed ID: 12064732 [TBL] [Abstract][Full Text] [Related]
38. Ribosome-binding sites on chloroplast rbcL and psbA mRNAs and light-induced initiation of D1 translation. Kim J; Mullet JE Plant Mol Biol; 1994 Jun; 25(3):437-48. PubMed ID: 8049369 [TBL] [Abstract][Full Text] [Related]
39. Analysis of the roles of tRNA structure, ribosomal protein L9, and the bacteriophage T4 gene 60 bypassing signals during ribosome slippage on mRNA. Herr AJ; Nelson CC; Wills NM; Gesteland RF; Atkins JF J Mol Biol; 2001 Jun; 309(5):1029-48. PubMed ID: 11399077 [TBL] [Abstract][Full Text] [Related]
40. Selection of the mRNA translation initiation region by Escherichia coli ribosomes. Calogero RA; Pon CL; Canonaco MA; Gualerzi CO Proc Natl Acad Sci U S A; 1988 Sep; 85(17):6427-31. PubMed ID: 3045816 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]