BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 7518052)

  • 1. Mycoflora of post-harvest maize and wheat grains and the implication of their contamination by molds.
    Adisa A
    Nahrung; 1994; 38(3):318-26. PubMed ID: 7518052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution to the fungal flora of cereal grains in Egypt.
    El-Kady IA; Abdel-Hafez SI; El-Maraghy SS
    Mycopathologia; 1982 Feb; 77(2):103-9. PubMed ID: 7070479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fungi Isolated from Maize (Zea mays L.) Grains and Production of Associated Enzyme Activities.
    Abe CA; Faria CB; de Castro FF; de Souza SR; dos Santos FC; da Silva CN; Tessmann DJ; Barbosa-Tessmann IP
    Int J Mol Sci; 2015 Jul; 16(7):15328-46. PubMed ID: 26198227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mycobiota and mycotoxins in fermented feed, wheat grains and corn grains in Southeastern Buenos Aires Province, Argentina.
    Roigé MB; Aranguren SM; Riccio MB; Pereyra S; Soraci AL; Tapia MO
    Rev Iberoam Micol; 2009 Dec; 26(4):233-7. PubMed ID: 19766518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ochratoxin A and ochratoxin-producing fungi on cereal grain in China: a review.
    Zhihong L; Kunlun H; Yunbo L
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(4):461-70. PubMed ID: 25571918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prevention of toxigenic fungal growth in stored grains by carbon dioxide detection.
    Zhai HC; Zhang SB; Huang SX; Cai JP
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(4):596-603. PubMed ID: 25254604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of amylolytic and proteolytic activities of ruminal fungi grown on cereal grains.
    Yanke LJ; Dong Y; McAllister TA; Bae HD; Cheng KJ
    Can J Microbiol; 1993 Aug; 39(8):817-20. PubMed ID: 7693316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polysaccharide degrading enzymes of a toxigenic strain of Aspergillus clavatus from Nigerian poultry feeds.
    Ogundero VW; Adebajo LO
    Nahrung; 1987; 31(10):993-1000. PubMed ID: 2449615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incidence and detection of thermotolerant and thermophilic fungi from maize with particular reference to Thermoascus species.
    Wareing PW
    Int J Food Microbiol; 1997 Apr; 35(2):137-45. PubMed ID: 9105921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The mycoflora of corn silage].
    Aleksandrov M
    Vet Med Nauki; 1986; 23(9):57-60. PubMed ID: 3811222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxigenic fungi and the deterioration of Nigerian poultry feeds.
    Ogundero VW
    Mycopathologia; 1987 Nov; 100(2):75-83. PubMed ID: 3122047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Extrinsic and intrinsic factors associated with mycotoxigenic fungi populations of maize grains (Zea mays L.) stored in silobags in Argentina].
    Castellari CC; Cendoya MG; Marcos Valle FJ; Barrera V; Pacin AM
    Rev Argent Microbiol; 2015; 47(4):350-9. PubMed ID: 26601597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multimycotoxin and fungal analysis of maize grains from south and southwestern Ethiopia.
    Getachew A; Chala A; Hofgaard IS; Brurberg MB; Sulyok M; Tronsmo AM
    Food Addit Contam Part B Surveill; 2018 Mar; 11(1):64-74. PubMed ID: 29258380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro experimental environments lacking or containing soil disparately affect competition experiments of Aspergillus flavus and co-occurring fungi in maize grains.
    Falade TD; Syed Mohdhamdan SH; Sultanbawa Y; Fletcher MT; Harvey JJ; Chaliha M; Fox GP
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016 Jul; 33(7):1241-53. PubMed ID: 27264786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mycobiota and mycotoxin contamination of maize flours and popcorn kernels for human consumption commercialized in Spain.
    Alborch L; Bragulat MR; Castellá G; Abarca ML; Cabañes FJ
    Food Microbiol; 2012 Oct; 32(1):97-103. PubMed ID: 22850379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteolysis by toxigenic Aspergillus nidulans from Nigerian palm produce.
    Ogundero VW
    Nahrung; 1987; 31(4):285-90. PubMed ID: 3302717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of water activity, temperature and incubation time on growth and ochratoxin A production by Aspergillus niger and Aspergillus carbonarius on maize kernels.
    Alborch L; Bragulat MR; Abarca ML; Cabañes FJ
    Int J Food Microbiol; 2011 May; 147(1):53-7. PubMed ID: 21444120
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between environmental factors, dry matter loss and mycotoxin levels in stored wheat and maize infected with Fusarium species.
    Mylona K; Sulyok M; Magan N
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(7):1118-28. PubMed ID: 22494580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics in the microbiology of maize silage during whole-season storage.
    Storm IM; Kristensen NB; Raun BM; Smedsgaard J; Thrane U
    J Appl Microbiol; 2010 Sep; 109(3):1017-26. PubMed ID: 20456530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Amylases of the fungus Aspergillus flavipes associated with Fucus evanescens].
    Frolova GM; Sil'chenko AS; Pivkin MV; Mikhaĭlov VV
    Prikl Biokhim Mikrobiol; 2002; 38(2):155-60. PubMed ID: 11962212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.