These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 7518944)
21. MCC-134, a novel vascular relaxing agent, is an inverse agonist for the pancreatic-type ATP-sensitive K(+) channel. Shindo T; Katayama Y; Horio Y; Kurachi Y J Pharmacol Exp Ther; 2000 Jan; 292(1):131-5. PubMed ID: 10604939 [TBL] [Abstract][Full Text] [Related]
22. Two types of K(+) channels are present in the apical membrane of the thick ascending limb of the mouse kidney. Lu M; Wang W Kidney Blood Press Res; 2000; 23(2):75-82. PubMed ID: 10765108 [TBL] [Abstract][Full Text] [Related]
23. ATP-sensitive K+ channels and cellular actions of morphine in periaqueductal gray slices of neonatal and adult rats. Chiou LC; How CH J Pharmacol Exp Ther; 2001 Aug; 298(2):493-500. PubMed ID: 11454910 [TBL] [Abstract][Full Text] [Related]
25. The ROMK-cystic fibrosis transmembrane conductance regulator connection: new insights into the relationship between ROMK and cystic fibrosis transmembrane conductance regulator channels. Ho K Curr Opin Nephrol Hypertens; 1998 Jan; 7(1):49-58. PubMed ID: 9442363 [TBL] [Abstract][Full Text] [Related]
26. Cloning of rabbit Kir6.1, SUR2A, and SUR2B: possible candidates for a renal K(ATP) channel. Brochiero E; Wallendorf B; Gagnon D; Laprade R; Lapointe JY Am J Physiol Renal Physiol; 2002 Feb; 282(2):F289-300. PubMed ID: 11788443 [TBL] [Abstract][Full Text] [Related]
27. Cytoplasmic terminus domains of Kir6.x confer different nucleotide-dependent gating on the ATP-sensitive K+ channel. Takano M; Xie LH; Otani H; Horie M J Physiol; 1998 Oct; 512 ( Pt 2)(Pt 2):395-406. PubMed ID: 9763630 [TBL] [Abstract][Full Text] [Related]
28. Dual control by ATP and acetylcholine of inwardly rectifying K+ channels in bovine atrial cells. Friel DD; Bean BP Pflugers Arch; 1990 Mar; 415(6):651-7. PubMed ID: 2336344 [TBL] [Abstract][Full Text] [Related]
29. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K(+)-channel proteins. Krapivinsky G; Gordon EA; Wickman K; Velimirović B; Krapivinsky L; Clapham DE Nature; 1995 Mar; 374(6518):135-41. PubMed ID: 7877685 [TBL] [Abstract][Full Text] [Related]
30. Characterization and variation of a human inwardly-rectifying-K-channel gene (KCNJ6): a putative ATP-sensitive K-channel subunit. Sakura H; Bond C; Warren-Perry M; Horsley S; Kearney L; Tucker S; Adelman J; Turner R; Ashcroft FM FEBS Lett; 1995 Jun; 367(2):193-7. PubMed ID: 7796919 [TBL] [Abstract][Full Text] [Related]
31. Inhibitory effects of protein kinase C on inwardly rectifying K+- and ATP-sensitive K+ channel-mediated responses of the basilar artery. Chrissobolis S; Sobey CG Stroke; 2002 Jun; 33(6):1692-7. PubMed ID: 12053013 [TBL] [Abstract][Full Text] [Related]
32. PKA-mediated phosphorylation of the human K(ATP) channel: separate roles of Kir6.2 and SUR1 subunit phosphorylation. Béguin P; Nagashima K; Nishimura M; Gonoi T; Seino S EMBO J; 1999 Sep; 18(17):4722-32. PubMed ID: 10469651 [TBL] [Abstract][Full Text] [Related]
33. Sulphonylurea receptor 2B and Kir6.1 form a sulphonylurea-sensitive but ATP-insensitive K+ channel. Yamada M; Isomoto S; Matsumoto S; Kondo C; Shindo T; Horio Y; Kurachi Y J Physiol; 1997 Mar; 499 ( Pt 3)(Pt 3):715-20. PubMed ID: 9130167 [TBL] [Abstract][Full Text] [Related]
34. Proximal C-terminal domain of sulphonylurea receptor 2A interacts with pore-forming Kir6 subunits in KATP channels. Rainbow RD; James M; Hudman D; Al Johi M; Singh H; Watson PJ; Ashmole I; Davies NW; Lodwick D; Norman RI Biochem J; 2004 Apr; 379(Pt 1):173-81. PubMed ID: 14672537 [TBL] [Abstract][Full Text] [Related]
35. Rat inwardly rectifying potassium channel Kir6.2: cloning electrophysiological characterization, and decreased expression in pancreatic islets of male Zucker diabetic fatty rats. Tokuyama Y; Fan Z; Furuta H; Makielski JC; Polonsky KS; Bell GI; Yano H Biochem Biophys Res Commun; 1996 Mar; 220(3):532-8. PubMed ID: 8607800 [TBL] [Abstract][Full Text] [Related]
36. ROMK inwardly rectifying ATP-sensitive K+ channel. II. Cloning and distribution of alternative forms. Boim MA; Ho K; Shuck ME; Bienkowski MJ; Block JH; Slightom JL; Yang Y; Brenner BM; Hebert SC Am J Physiol; 1995 Jun; 268(6 Pt 2):F1132-40. PubMed ID: 7611454 [TBL] [Abstract][Full Text] [Related]
37. C-terminal tails of sulfonylurea receptors control ADP-induced activation and diazoxide modulation of ATP-sensitive K(+) channels. Matsuoka T; Matsushita K; Katayama Y; Fujita A; Inageda K; Tanemoto M; Inanobe A; Yamashita S; Matsuzawa Y; Kurachi Y Circ Res; 2000 Nov; 87(10):873-80. PubMed ID: 11073882 [TBL] [Abstract][Full Text] [Related]
38. Uncoupling by (--)-epigallocatechin-3-gallate of ATP-sensitive potassium channels from phosphatidylinositol polyphosphates and ATP. Jin JY; Park SH; Bae JH; Cho HC; Lim JG; Park WS; Han J; Lee JH; Song DK Pharmacol Res; 2007 Sep; 56(3):237-47. PubMed ID: 17656102 [TBL] [Abstract][Full Text] [Related]
39. Inactivation of a G protein-coupled inwardly rectifying K+ channel. Reuveny E J Physiol; 1997 Nov; 505 ( Pt 1)(Pt 1):2. PubMed ID: 9409466 [No Abstract] [Full Text] [Related]
40. Selectivity of repaglinide and glibenclamide for the pancreatic over the cardiovascular K(ATP) channels. Stephan D; Winkler M; Kühner P; Russ U; Quast U Diabetologia; 2006 Sep; 49(9):2039-48. PubMed ID: 16865362 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]