These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 7518944)

  • 41. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel.
    Ho K; Nichols CG; Lederer WJ; Lytton J; Vassilev PM; Kanazirska MV; Hebert SC
    Nature; 1993 Mar; 362(6415):31-8. PubMed ID: 7680431
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor.
    Inagaki N; Gonoi T; Clement JP; Namba N; Inazawa J; Gonzalez G; Aguilar-Bryan L; Seino S; Bryan J
    Science; 1995 Nov; 270(5239):1166-70. PubMed ID: 7502040
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The structure and function of the ATP-sensitive K+ channel in insulin-secreting pancreatic beta-cells.
    Miki T; Nagashima K; Seino S
    J Mol Endocrinol; 1999 Apr; 22(2):113-23. PubMed ID: 10194514
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A new ER trafficking signal regulates the subunit stoichiometry of plasma membrane K(ATP) channels.
    Zerangue N; Schwappach B; Jan YN; Jan LY
    Neuron; 1999 Mar; 22(3):537-48. PubMed ID: 10197533
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Remodelling of the SUR-Kir6.2 interface of the KATP channel upon ATP binding revealed by the conformational blocker rhodamine 123.
    Hosy E; Dérand R; Revilloud J; Vivaudou M
    J Physiol; 2007 Jul; 582(Pt 1):27-39. PubMed ID: 17510180
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Different molecular sites of action for the KATP channel inhibitors, PNU-99963 and PNU-37883A.
    Cui Y; Tinker A; Clapp LH
    Br J Pharmacol; 2003 May; 139(1):122-8. PubMed ID: 12746230
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structure and function of the low conductance KATP channel, ROMK.
    Hebert SC; Wang WH
    Wien Klin Wochenschr; 1997 Jun; 109(12-13):471-6. PubMed ID: 9261988
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Binding and effect of K ATP channel openers in the absence of Mg2+.
    Russ U; Lange U; Löffler-Walz C; Hambrock A; Quast U
    Br J Pharmacol; 2003 May; 139(2):368-80. PubMed ID: 12770942
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nicorandil enhances cardiac endothelial nitric oxide synthase expression via activation of adenosine triphosphate-sensitive K channel in rat.
    Horinaka S; Kobayashi N; Higashi T; Hara K; Hara S; Matsuoka H
    J Cardiovasc Pharmacol; 2001 Aug; 38(2):200-10. PubMed ID: 11483869
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A region of the sulfonylurea receptor critical for a modulation of ATP-sensitive K(+) channels by G-protein betagamma-subunits.
    Wada Y; Yamashita T; Imai K; Miura R; Takao K; Nishi M; Takeshima H; Asano T; Morishita R; Nishizawa K; Kokubun S; Nukada T
    EMBO J; 2000 Sep; 19(18):4915-25. PubMed ID: 10990455
    [TBL] [Abstract][Full Text] [Related]  

  • 51. ATP-sensitive potassium channel traffic regulation by adenosine and protein kinase C.
    Hu K; Huang CS; Jan YN; Jan LY
    Neuron; 2003 May; 38(3):417-32. PubMed ID: 12741989
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Isoflurane activates sarcolemmal adenosine triphosphate-sensitive potassium channels in vascular smooth muscle cells: a role for protein kinase A.
    Tanaka K; Kawano T; Nakamura A; Nazari H; Kawahito S; Oshita S; Takahashi A; Nakaya Y
    Anesthesiology; 2007 May; 106(5):984-91. PubMed ID: 17457130
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A novel K(ATP) current in cultured neonatal rat atrial appendage cardiomyocytes.
    Baron A; van Bever L; Monnier D; Roatti A; Baertschi AJ
    Circ Res; 1999 Oct; 85(8):707-15. PubMed ID: 10521244
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional coupling between sulfonylurea receptor type 1 and a nonselective cation channel in reactive astrocytes from adult rat brain.
    Chen M; Dong Y; Simard JM
    J Neurosci; 2003 Sep; 23(24):8568-77. PubMed ID: 13679426
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mitochondrial K(ATP) channels: probing molecular identity and pharmacology.
    Terzic A; Dzeja PP; Holmuhamedov EL
    J Mol Cell Cardiol; 2000 Nov; 32(11):1911-5. PubMed ID: 11040097
    [No Abstract]   [Full Text] [Related]  

  • 56. Moving together: K+ channel openers and ATP-sensitive K+ channels.
    Quast U; Cook NS
    Trends Pharmacol Sci; 1989 Nov; 10(11):431-5. PubMed ID: 2692253
    [No Abstract]   [Full Text] [Related]  

  • 57. Cloning and expression of two brain-specific inwardly rectifying potassium channels.
    Bredt DS; Wang TL; Cohen NA; Guggino WB; Snyder SH
    Proc Natl Acad Sci U S A; 1995 Jul; 92(15):6753-7. PubMed ID: 7624316
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney.
    Lu M; Leng Q; Egan ME; Caplan MJ; Boulpaep EL; Giebisch GH; Hebert SC
    J Clin Invest; 2006 Mar; 116(3):797-807. PubMed ID: 16470247
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cloning and functional expression of the rat brain KIR6.2 channel.
    Takano M; Ishii T; Xie LH
    Jpn J Physiol; 1996 Dec; 46(6):491-5. PubMed ID: 9087860
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Diverse roles of K(ATP) channels learned from Kir6.2 genetically engineered mice.
    Seino S; Iwanaga T; Nagashima K; Miki T
    Diabetes; 2000 Mar; 49(3):311-8. PubMed ID: 10868950
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.