These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

57 related articles for article (PubMed ID: 7518947)

  • 1. Long-term potentiation and glutamate receptors: a role for protein kinases.
    Müller D
    Ren Physiol Biochem; 1994; 17(3-4):157-60. PubMed ID: 7518947
    [No Abstract]   [Full Text] [Related]  

  • 2. Excitatory interactions between glutamate receptors and protein kinases.
    Soderling TR; Tan SE; McGlade-McCulloh E; Yamamoto H; Fukunaga K
    J Neurobiol; 1994 Mar; 25(3):304-11. PubMed ID: 7910847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A role of Ca2+/calmodulin-dependent protein kinase II in the induction of long-term potentiation in hippocampal CA1 area.
    Miyamoto E; Fukunaga K
    Neurosci Res; 1996 Jan; 24(2):117-22. PubMed ID: 8929917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long-term enhancement of excitability and the regulation of glutamate receptors by protein kinases.
    MacDonald JF; Browning MD; Wang LY
    Epilepsy Res Suppl; 1996; 12():275-82. PubMed ID: 9302526
    [No Abstract]   [Full Text] [Related]  

  • 5. Roles of CaMKII, PKA, and PKC in the induction and maintenance of LTP of C-fiber-evoked field potentials in rat spinal dorsal horn.
    Yang HW; Hu XD; Zhang HM; Xin WJ; Li MT; Zhang T; Zhou LJ; Liu XG
    J Neurophysiol; 2004 Mar; 91(3):1122-33. PubMed ID: 14586032
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity.
    Lee HK; Barbarosie M; Kameyama K; Bear MF; Huganir RL
    Nature; 2000 Jun; 405(6789):955-9. PubMed ID: 10879537
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Presynaptic long-term depression at a central glutamatergic synapse: a role for CaMKII.
    Margrie TW; Rostas JA; Sah P
    Nat Neurosci; 1998 Sep; 1(5):378-83. PubMed ID: 10196527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-methyl-D-aspartate receptor-dependent long-term potentiation in CA1 region affects synaptic expression of glutamate receptor subunits and associated proteins in the whole hippocampus.
    Zhong WX; Dong ZF; Tian M; Cao J; Xu L; Luo JH
    Neuroscience; 2006 Sep; 141(3):1399-413. PubMed ID: 16766131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-restricted role for dendritic activation of the mTOR-p70S6K pathway in the induction of late-phase long-term potentiation in the CA1.
    Cammalleri M; Lütjens R; Berton F; King AR; Simpson C; Francesconi W; Sanna PP
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):14368-73. PubMed ID: 14623952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ca2+/calmodulin-dependent protein kinase II-dependent long-term potentiation in the rat suprachiasmatic nucleus and its inhibition by melatonin.
    Fukunaga K; Horikawa K; Shibata S; Takeuchi Y; Miyamoto E
    J Neurosci Res; 2002 Dec; 70(6):799-807. PubMed ID: 12444602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Functional significance and mechanism of long-term potentiation: overview].
    Tsumoto T
    Tanpakushitsu Kakusan Koso; 2000 Feb; 45(3 Suppl):461-3. PubMed ID: 10707657
    [No Abstract]   [Full Text] [Related]  

  • 12. [Regulation of synaptic efficacy by neural activity in the hippocampus].
    Fukunaga K; Miyamoto E
    Tanpakushitsu Kakusan Koso; 2000 Feb; 45(3 Suppl):474-82. PubMed ID: 10707659
    [No Abstract]   [Full Text] [Related]  

  • 13. Flies put the buzz back into long-term-potentiation.
    Paulsen O; Morris RG
    Nat Neurosci; 2002 Apr; 5(4):289-90. PubMed ID: 11914715
    [No Abstract]   [Full Text] [Related]  

  • 14. Age-related deficits in long-term potentiation are insensitive to hydrogen peroxide: coincidence with enhanced autophosphorylation of Ca2+/calmodulin-dependent protein kinase II.
    Watson JB; Khorasani H; Persson A; Huang KP; Huang FL; O'Dell TJ
    J Neurosci Res; 2002 Nov; 70(3):298-308. PubMed ID: 12391589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Molecular mechanisms of long-term potentiation in hihhocampus].
    Miyamoto E; Fukunaga K
    Tanpakushitsu Kakusan Koso; 2004 Feb; 49(3 Suppl):391-7. PubMed ID: 14976761
    [No Abstract]   [Full Text] [Related]  

  • 16. Presynaptic and postsynaptic mechanisms of long-term potentiation.
    Nayak A; Browning MD
    Adv Neurol; 1999; 79():645-58. PubMed ID: 10514852
    [No Abstract]   [Full Text] [Related]  

  • 17. [Regulation of synaptic efficacy and protein phosphorylation-dephosphorylation].
    Miyamoto E
    Tanpakushitsu Kakusan Koso; 1995 Apr; 40(6):682-90. PubMed ID: 7754053
    [No Abstract]   [Full Text] [Related]  

  • 18. Activation of metabotropic glutamate receptor subtype 1/protein kinase C/mitogen-activated protein kinase pathway is required for postischemic long-term potentiation in the striatum.
    Calabresi P; Saulle E; Marfia GA; Centonze D; Mulloy R; Picconi B; Hipskind RA; Conquet F; Bernardi G
    Mol Pharmacol; 2001 Oct; 60(4):808-15. PubMed ID: 11562444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Input- and subunit-specific AMPA receptor trafficking underlying long-term potentiation at hippocampal CA3 synapses.
    Kakegawa W; Tsuzuki K; Yoshida Y; Kameyama K; Ozawa S
    Eur J Neurosci; 2004 Jul; 20(1):101-10. PubMed ID: 15245483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation.
    Zhao D; Watson JB; Xie CW
    J Neurophysiol; 2004 Nov; 92(5):2853-8. PubMed ID: 15212428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.