BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 7519009)

  • 1. Regulation of System B0 amino-acid-transport activity in the renal epithelial cell line NBL-1 and concomitant changes in SAAT1 hybridizing transcripts.
    Plakidou-Dymock S; Tanner MJ; McGivan JD
    Biochem J; 1994 Jul; 301 ( Pt 2)(Pt 2):399-405. PubMed ID: 7519009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Delineation of sodium-stimulated amino acid transport pathways in rabbit kidney brush border vesicles.
    Mircheff AK; Kippen I; Hirayama B; Wright EM
    J Membr Biol; 1982; 64(1-2):113-22. PubMed ID: 7057450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive regulation of Na(+)-dependent phosphate transport in the bovine renal epithelial cell line NBL-1. Identification of the phosphate transporter as a 55-kDa glycoprotein.
    Helps CR; McGivan J
    Eur J Biochem; 1991 Sep; 200(3):797-803. PubMed ID: 1915351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The bovine renal epithelial cell line NBL-1 expresses a broad specificity Na(+)-dependent neutral amino acid transport system (System Bo) similar to that in bovine renal brush border membrane vesicles.
    Doyle FA; McGivan JD
    Biochim Biophys Acta; 1992 Feb; 1104(1):55-62. PubMed ID: 1550853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Basolateral amino acid transport systems in the perfused exocrine pancreas: sodium-dependency and kinetic interactions between influx and efflux mechanisms.
    Mann GE; Peran S
    Biochim Biophys Acta; 1986 Jun; 858(2):263-74. PubMed ID: 3087423
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of the glutamate transporter by amino acid deprivation and associated effects on the level of EAAC1 mRNA in the renal epithelial cell line NBL-I.
    Plakidou-Dymock S; McGivan JD
    Biochem J; 1993 Nov; 295 ( Pt 3)(Pt 3):749-55. PubMed ID: 8240287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid deprivation leads to the emergence of System A activity and the synthesis of a specific membrane glycoprotein in the bovine renal epithelial cell line NBL-1.
    Felipe A; Soler C; McGivan JD
    Biochem J; 1992 Jun; 284 ( Pt 2)(Pt 2):577-82. PubMed ID: 1599439
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterisation and starvation induced regulation of methionine uptake sites in mouse mammary gland.
    Verma N; Kansal VK
    Indian J Exp Biol; 1995 Jul; 33(7):516-20. PubMed ID: 7590960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of the A system of amino acid transport in Chinese hamster ovary cells, CHO-K1: the difference in specificity between the apo-repressor inactivator (apo-ri) and the transporter and the characterization of the proposed apo-ri.
    Moffett J; Englesberg E
    J Cell Physiol; 1986 Mar; 126(3):421-9. PubMed ID: 3081525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutral amino acid transport in placental plasma membrane vesicles in the late pregnant rat. Evidence for a B0-like transport system.
    Carbó N; López-Soriano FJ; Argilés JM
    Eur J Obstet Gynecol Reprod Biol; 1997 Jan; 71(1):85-90. PubMed ID: 9031965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calreticulin--a stress protein induced in the renal epithelial cell line NBL-1 by amino acid deprivation.
    Plakidou-Dymock S; McGivan JD
    Cell Calcium; 1994 Jul; 16(1):1-8. PubMed ID: 7954707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous regulation of amino acid influx and efflux by system A in the hepatoma cell HTC. Ouabain simulates the starvation-induced derepression of system A amino acid transport.
    White MF; Christensen HN
    J Biol Chem; 1983 Jul; 258(13):8028-38. PubMed ID: 6863276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutral amino acid transport by isolated small intestinal cells from guinea pigs.
    Del Castillo JR; Muñiz R
    Am J Physiol; 1991 Dec; 261(6 Pt 1):G1030-6. PubMed ID: 1767844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of methylaminoisobutyric acid transport by system A in rat mammary gland.
    Tovar AR; Avila E; DeSantiago S; Torres N
    Metabolism; 2000 Jul; 49(7):873-9. PubMed ID: 10909998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hormonal regulation of the System A amino acid transport adaptive response mechanism in a kidney epithelial cell line (MDCK).
    Boerner P; Saier MH
    J Cell Physiol; 1985 Feb; 122(2):316-22. PubMed ID: 3881463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differentiation- and protein kinase C-dependent regulation of alanine transport via system B.
    Pan M; Stevens BR
    J Biol Chem; 1995 Feb; 270(8):3582-7. PubMed ID: 7876094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hyperosmolarity leads to an increase in derepressed system A activity in the renal epithelial cell line NBL-1.
    Soler C; Felipe A; Casado FJ; McGivan JD; Pastor-Anglada M
    Biochem J; 1993 Feb; 289 ( Pt 3)(Pt 3):653-8. PubMed ID: 8435065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of starvation on neutral amino acid transport in isolated small-intestinal cells from guinea pigs.
    Muñíz R; Burguillo L; del Castillo JR
    Pflugers Arch; 1993 Apr; 423(1-2):59-66. PubMed ID: 8488093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrimination of parallel neutral amino acid transport systems in the basolateral membrane of cat salivary epithelium.
    Mann GE; Yudilevich DL
    J Physiol; 1984 Feb; 347():111-27. PubMed ID: 6707951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of system A amino acid transport and hepatocyte proliferation following partial hepatectomy in the rat.
    Freeman TL; Ngo HQ; Mailliard ME
    Hepatology; 1999 Aug; 30(2):437-44. PubMed ID: 10421652
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.