These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 7519305)
1. Profile of the regions of acetylcholine receptor alpha chain recognized by T-lymphocytes and by antibodies in EAMG-susceptible and non-susceptible mouse strains after different periods of immunization with the receptor. Oshima M; Pachner AR; Atassi MZ Mol Immunol; 1994 Aug; 31(11):833-43. PubMed ID: 7519305 [TBL] [Abstract][Full Text] [Related]
2. T cell responses in EAMG-susceptible and non-susceptible mouse strains after immunization with overlapping peptides encompassing the extracellular part of Torpedo californica acetylcholine receptor alpha chain. Implication to role in myasthenia gravis of autoimmune T-cell responses against receptor degradation products. Oshima M; Yokoi T; Deitiker P; Atassi MZ Autoimmunity; 1998; 27(2):79-90. PubMed ID: 9583739 [TBL] [Abstract][Full Text] [Related]
3. Suppression of experimental autoimmune myasthenia gravis by epitope-specific neonatal tolerance to synthetic region alpha 146-162 of acetylcholine receptor. Shenoy M; Oshima M; Atassi MZ; Christadoss P Clin Immunol Immunopathol; 1993 Mar; 66(3):230-8. PubMed ID: 7679342 [TBL] [Abstract][Full Text] [Related]
4. Autoimmune responses against acetylcholine receptor: T and B cell collaboration and manipulation by synthetic peptides. Atassi MZ; Oshima M Crit Rev Immunol; 1997; 17(5-6):481-95. PubMed ID: 9419435 [TBL] [Abstract][Full Text] [Related]
5. Factors that determine the severity of experimental myasthenia gravis. Drachman DB; McIntosh KR; Yang B Ann N Y Acad Sci; 1998 May; 841():262-82. PubMed ID: 9668247 [TBL] [Abstract][Full Text] [Related]
6. On the initial trigger of myasthenia gravis and suppression of the disease by antibodies against the MHC peptide region involved in the presentation of a pathogenic T-cell epitope. Atassi MZ; Oshima M; Deitiker P Crit Rev Immunol; 2001; 21(1-3):1-27. PubMed ID: 11642597 [TBL] [Abstract][Full Text] [Related]
7. An immunodominant site of acetylcholine receptor in experimental myasthenia mapped with T lymphocyte clones and synthetic peptides. Pachner AR; Kantor FS; Mulac-Jericevic B; Atassi MZ Immunol Lett; 1989 Feb; 20(3):199-204. PubMed ID: 2469649 [TBL] [Abstract][Full Text] [Related]
8. How subtle differences in MHC class II affect the severity of experimental myasthenia gravis. Yang B; McIntosh KR; Drachman DB Clin Immunol Immunopathol; 1998 Jan; 86(1):45-58. PubMed ID: 9434796 [TBL] [Abstract][Full Text] [Related]
9. Injection of inactive Bordetella pertussis and complete Freund's adjuvant with Torpedo californica AChR increases the occurrence of experimental autoimmune myasthenia gravis in C57BL/6 mice. Maruta T; Oshima M; Mosier DR; Atassi MZ Autoimmunity; 2017 Aug; 50(5):293-305. PubMed ID: 28548588 [TBL] [Abstract][Full Text] [Related]
10. B-cell activation in vitro by helper T cells specific to region alpha 146-162 of Torpedo californica nicotinic acetylcholine receptor. Rosenberg JS; Oshima M; Atassi MZ J Immunol; 1996 Oct; 157(7):3192-9. PubMed ID: 8816433 [TBL] [Abstract][Full Text] [Related]
11. Experimental myasthenia gravis in congenic mice. Sequence mapping and H-2 restriction of T helper epitopes on the alpha subunits of Torpedo californica and murine acetylcholine receptors. Bellone M; Ostlie N; Lei S; Conti-Tronconi BM Eur J Immunol; 1991 Oct; 21(10):2303-10. PubMed ID: 1680694 [TBL] [Abstract][Full Text] [Related]
12. Determinant selection in murine experimental autoimmune myasthenia gravis. Effect of the bm12 mutation on T cell recognition of acetylcholine receptor epitopes. Infante AJ; Thompson PA; Krolick KA; Wall KA J Immunol; 1991 May; 146(9):2977-82. PubMed ID: 1707927 [TBL] [Abstract][Full Text] [Related]
13. TCR gene usage in experimental autoimmune myasthenia gravis pathogenesis. Usage of multiple TCRBV genes in the H-2b strains. Wu B; Shenoy M; Goluszko E; Kaul R; Christadoss P J Immunol; 1995 Apr; 154(7):3603-10. PubMed ID: 7897239 [TBL] [Abstract][Full Text] [Related]
14. Specificity of the T cell immune response to acetylcholine receptor in experimental autoimmune myasthenia gravis. Response to subunits and synthetic peptides. Fujii Y; Lindstrom J J Immunol; 1988 Mar; 140(6):1830-7. PubMed ID: 2450133 [TBL] [Abstract][Full Text] [Related]
15. The effect of B cell deficiency on the immune response to acetylcholine receptor and the development of experimental autoimmune myasthenia gravis. Dedhia V; Goluszko E; Wu B; Deng C; Christadoss P Clin Immunol Immunopathol; 1998 Jun; 87(3):266-75. PubMed ID: 9646836 [TBL] [Abstract][Full Text] [Related]
16. The I-Abm12 mutation, which confers resistance to experimental myasthenia gravis, drastically affects the epitope repertoire of murine CD4+ cells sensitized to nicotinic acetylcholine receptor. Bellone M; Ostlie N; Lei SJ; Wu XD; Conti-Tronconi BM J Immunol; 1991 Sep; 147(5):1484-91. PubMed ID: 1715360 [TBL] [Abstract][Full Text] [Related]
18. Prevention of experimental autoimmune myasthenia gravis by a monoclonal antibody to a complementary peptide for the main immunogenic region of the acetylcholine receptors. Araga S; Galin FS; Kishimoto M; Adachi A; Blalock JB J Immunol; 1996 Jul; 157(1):386-92. PubMed ID: 8683141 [TBL] [Abstract][Full Text] [Related]
19. Preferential use of a T cell receptor V beta gene by acetylcholine receptor reactive T cells from myasthenia gravis-susceptible mice. Infante AJ; Levcovitz H; Gordon V; Wall KA; Thompson PA; Krolick KA J Immunol; 1992 Jun; 148(11):3385-90. PubMed ID: 1375242 [TBL] [Abstract][Full Text] [Related]
20. T cells of mice treated with mPEG-myasthenogenic peptide conjugate are involved in protection against EAMG by stimulating lower pathogenic antibody responses. Oshima M; Atassi MZ Autoimmunity; 2000; 32(1):45-55. PubMed ID: 10958175 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]