BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

339 related articles for article (PubMed ID: 7519669)

  • 1. Possible role of nitric oxide in catecholamine secretion by chromaffin cells in the presence and absence of cultured endothelial cells.
    Torres M; Ceballos G; Rubio R
    J Neurochem; 1994 Sep; 63(3):988-96. PubMed ID: 7519669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nitric oxide modulates evoked catecholamine release from canine adrenal medulla.
    Barnes RD; Ward LE; Frank KP; Tyce GM; Hunter LW; Rorie DK
    Neuroscience; 2001; 104(4):1165-73. PubMed ID: 11457599
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activation of adrenal medullary L-arginine: nitric oxide pathway by stimuli which induce the release of catecholamines.
    Moro MA; Michelena P; Sánchez-García P; Palmer R; Moncada S; García AG
    Eur J Pharmacol; 1993 Aug; 246(3):213-8. PubMed ID: 7693497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional coupling of nitric oxide synthase and soluble guanylyl cyclase in controlling catecholamine secretion from bovine chromaffin cells.
    Schwarz PM; Rodriguez-Pascual F; Koesling D; Torres M; Förstermann U
    Neuroscience; 1998 Jan; 82(1):255-65. PubMed ID: 9483518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of polyphenolic compounds isolated from Rubus coreanum on catecholamine release in the rat adrenal medulla.
    Kee YW; Lim DY
    Arch Pharm Res; 2007 Oct; 30(10):1240-51. PubMed ID: 18038903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationship between arachidonic acid release and catecholamine secretion from cultured bovine adrenal chromaffin cells.
    Frye RA; Holz RW
    J Neurochem; 1984 Jul; 43(1):146-50. PubMed ID: 6427410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition by methylene blue of the L-arginine metabolism to L-citrulline coupled with nitric oxide synthesis in cultured endothelial cells.
    Shimizu S; Yamamoto T; Momose K
    Res Commun Chem Pathol Pharmacol; 1993 Oct; 82(1):35-48. PubMed ID: 7505944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of nitric oxide synthase inhibition, nitric oxide and hydroperoxide on insulin release induced by various secretagogues.
    Panagiotidis G; Akesson B; Rydell EL; Lundquist I
    Br J Pharmacol; 1995 Jan; 114(2):289-96. PubMed ID: 7533613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Possible involvement of nitric oxide in acetylcholine-induced increase of intracellular Ca2+ concentration and catecholamine release in bovine adrenal chromaffin cells.
    Uchiyama Y; Morita K; Kitayama S; Suemitsu T; Minami N; Miyasako T; Dohi T
    Jpn J Pharmacol; 1994 May; 65(1):73-7. PubMed ID: 8089933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of nitric oxide in control of prolactin release by the adenohypophysis.
    Duvilanski BH; Zambruno C; Seilicovich A; Pisera D; Lasaga M; Diaz MC; Belova N; Rettori V; McCann SM
    Proc Natl Acad Sci U S A; 1995 Jan; 92(1):170-4. PubMed ID: 7529411
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A cellular mechanism for nitric oxide-mediated cholinergic control of mammalian heart rate.
    Han X; Shimoni Y; Giles WR
    J Gen Physiol; 1995 Jul; 106(1):45-65. PubMed ID: 7494138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of nitric oxide and guanosine 3',5'-cyclic monophosphate in mediating nonadrenergic, noncholinergic relaxation in guinea-pig pulmonary arteries.
    Liu SF; Crawley DE; Rohde JA; Evans TW; Barnes PJ
    Br J Pharmacol; 1992 Nov; 107(3):861-6. PubMed ID: 1335345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronal nitric oxide synthase modulates basal catecholamine secretion in bovine chromaffin cells.
    Vicente S; González MP; Oset-Gasque MJ
    J Neurosci Res; 2002 Aug; 69(3):327-40. PubMed ID: 12125074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelium-dependent relaxation to acetylcholine in bovine oviductal arteries: mediation by nitric oxide and changes in apamin-sensitive K+ conductance.
    García-Pascual A; Labadía A; Jimenez E; Costa G
    Br J Pharmacol; 1995 Aug; 115(7):1221-30. PubMed ID: 7582549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of nitric oxide in the endothelium-dependent relaxation induced by hydrogen peroxide in the rabbit aorta.
    Zembowicz A; Hatchett RJ; Jakubowski AM; Gryglewski RJ
    Br J Pharmacol; 1993 Sep; 110(1):151-8. PubMed ID: 7693274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitric oxide implication in the control of neurosecretion by chromaffin cells.
    Oset-Gasque MJ; Parramón M; Hortelano S; Boscá L; González MP
    J Neurochem; 1994 Nov; 63(5):1693-700. PubMed ID: 7523598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction by NG-nitro-L-arginine of H2O2-induced endothelial cell injury.
    Shimizu S; Nomoto M; Yamamoto T; Momose K
    Br J Pharmacol; 1994 Oct; 113(2):564-8. PubMed ID: 7530574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of cyclic GMP production in cultured endothelial cells of the pig by bradykinin, adenosine diphosphate, calcium ionophore A23187 and nitric oxide.
    Boulanger C; Schini VB; Moncada S; Vanhoutte PM
    Br J Pharmacol; 1990 Sep; 101(1):152-6. PubMed ID: 2178013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide activates Ca2+-activated K+ channels in cultured bovine adrenal chromaffin cells.
    Chen CH; Houchi H; Ohnaka M; Sakamoto S; Niwa Y; Nakaya Y
    Neurosci Lett; 1998 May; 248(2):127-9. PubMed ID: 9654359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolism of methylarginines by human vasculature; implications for the regulation of nitric oxide synthesis.
    MacAllister RJ; Fickling SA; Whitley GS; Vallance P
    Br J Pharmacol; 1994 May; 112(1):43-8. PubMed ID: 7518309
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.