These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
714 related articles for article (PubMed ID: 7520289)
1. Alpha-helical hydrophobic polypeptides form proton-selective channels in lipid bilayers. Oliver AE; Deamer DW Biophys J; 1994 May; 66(5):1364-79. PubMed ID: 7520289 [TBL] [Abstract][Full Text] [Related]
2. Attenuation of proton currents by methanol in a dioxolane-linked gramicidin A channel in different lipid bilayers. Quigley EP; Emerick AJ; Crumrine DS; Cukierman S Biophys J; 1998 Dec; 75(6):2811-20. PubMed ID: 9826603 [TBL] [Abstract][Full Text] [Related]
3. Proton conduction in gramicidin A and in its dioxolane-linked dimer in different lipid bilayers. Cukierman S; Quigley EP; Crumrine DS Biophys J; 1997 Nov; 73(5):2489-502. PubMed ID: 9370442 [TBL] [Abstract][Full Text] [Related]
4. Morphological behavior of acidic and neutral liposomes induced by basic amphiphilic alpha-helical peptides with systematically varied hydrophobic-hydrophilic balance. Kitamura A; Kiyota T; Tomohiro M; Umeda A; Lee S; Inoue T; Sugihara G Biophys J; 1999 Mar; 76(3):1457-68. PubMed ID: 10049327 [TBL] [Abstract][Full Text] [Related]
5. De novo design, synthesis, and characterization of a pore-forming small globular protein and its insertion into lipid bilayers. Lee S; Kiyota T; Kunitake T; Matsumoto E; Yamashita S; Anzai K; Sugihara G Biochemistry; 1997 Apr; 36(13):3782-91. PubMed ID: 9092807 [TBL] [Abstract][Full Text] [Related]
6. Conformational changes in alamethicin associated with substitution of its alpha-methylalanines with leucines: a FTIR spectroscopic analysis and correlation with channel kinetics. Haris PI; Molle G; Duclohier H Biophys J; 2004 Jan; 86(1 Pt 1):248-53. PubMed ID: 14695266 [TBL] [Abstract][Full Text] [Related]
7. Conformation and ion-channeling activity of a 27-residue peptide modeled on the single-transmembrane segment of the IsK (minK) protein. Aggeli A; Bannister ML; Bell M; Boden N; Findlay JB; Hunter M; Knowles PF; Yang JC Biochemistry; 1998 Jun; 37(22):8121-31. PubMed ID: 9609707 [TBL] [Abstract][Full Text] [Related]
8. Channel reconstitution in liposomes and planar bilayers with HPLC-purified MIP26 of bovine lens. Shen L; Shrager P; Girsch SJ; Donaldson PJ; Peracchia C J Membr Biol; 1991 Oct; 124(1):21-32. PubMed ID: 1722513 [TBL] [Abstract][Full Text] [Related]
10. Proton transfer in gramicidin channels is modulated by the thickness of monoglyceride bilayers. Chernyshev A; Armstrong KM; Cukierman S Biophys J; 2003 Jan; 84(1):238-50. PubMed ID: 12524278 [TBL] [Abstract][Full Text] [Related]
11. Peptide models of the helical hydrophobic transmembrane segments of membrane proteins: interactions of acetyl-K2-(LA)12-K2-amide with phosphatidylethanolamine bilayer membranes. Zhang YP; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2001 Jan; 40(2):474-82. PubMed ID: 11148042 [TBL] [Abstract][Full Text] [Related]
12. Desformylgramicidin: a model channel with an extremely high water permeability. Saparov SM; Antonenko YN; Koeppe RE; Pohl P Biophys J; 2000 Nov; 79(5):2526-34. PubMed ID: 11053127 [TBL] [Abstract][Full Text] [Related]
13. Electronic control of H Hemmatian Z; Keene S; Josberger E; Miyake T; Arboleda C; Soto-RodrÃguez J; Baneyx F; Rolandi M Nat Commun; 2016 Oct; 7():12981. PubMed ID: 27713411 [TBL] [Abstract][Full Text] [Related]
14. Structural polymorphism of gramicidin A channels: ion conductivity and spectral studies. Sychev SV; Sukhanov SV; Barsukov LI; Ivanov VT J Pept Sci; 1996; 2(3):141-56. PubMed ID: 9231323 [TBL] [Abstract][Full Text] [Related]
15. Noncontact dipole effects on channel permeation. I. Experiments with (5F-indole)Trp13 gramicidin A channels. Busath DD; Thulin CD; Hendershot RW; Phillips LR; Maughan P; Cole CD; Bingham NC; Morrison S; Baird LC; Hendershot RJ; Cotten M; Cross TA Biophys J; 1998 Dec; 75(6):2830-44. PubMed ID: 9826605 [TBL] [Abstract][Full Text] [Related]
16. Permeation of protons, potassium ions, and small polar molecules through phospholipid bilayers as a function of membrane thickness. Paula S; Volkov AG; Van Hoek AN; Haines TH; Deamer DW Biophys J; 1996 Jan; 70(1):339-48. PubMed ID: 8770210 [TBL] [Abstract][Full Text] [Related]
17. Modulation of proton transfer in the water wire of dioxolane-linked gramicidin channels by lipid membranes. de Godoy CM; Cukierman S Biophys J; 2001 Sep; 81(3):1430-8. PubMed ID: 11509357 [TBL] [Abstract][Full Text] [Related]
18. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylglycerol bilayers. Liu F; Lewis RN; Hodges RS; McElhaney RN Biochemistry; 2004 Mar; 43(12):3679-87. PubMed ID: 15035638 [TBL] [Abstract][Full Text] [Related]
19. Interaction of the 14-residue peptaibols, harzianins HC, with lipid bilayers: permeability modifications and conductance properties. Lucaciu M; Rebuffat S; Goulard C; Duclohier H; Molle G; Bodo B Biochim Biophys Acta; 1997 Jan; 1323(1):85-96. PubMed ID: 9030215 [TBL] [Abstract][Full Text] [Related]
20. Conformational and orientation studies of artificial ion channels incorporated into lipid bilayers. Biron E; Voyer N; Meillon JC; Cormier ME; Auger M Biopolymers; 2000; 55(5):364-72. PubMed ID: 11241211 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]