These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Evolution of the secondary structures and compensatory mutations of the ribosomal RNAs of Drosophila melanogaster. Hancock JM; Tautz D; Dover GA Mol Biol Evol; 1988 Jul; 5(4):393-414. PubMed ID: 3136295 [TBL] [Abstract][Full Text] [Related]
23. Analyzing the evolution of RNA secondary structures in vertebrate introns using Kimura's model of compensatory fitness interactions. Piskol R; Stephan W Mol Biol Evol; 2008 Nov; 25(11):2483-92. PubMed ID: 18775900 [TBL] [Abstract][Full Text] [Related]
24. Exploring phenotype space through neutral evolution. Huynen MA J Mol Evol; 1996 Sep; 43(3):165-9. PubMed ID: 8703081 [TBL] [Abstract][Full Text] [Related]
25. Interplay between RNA structure and protein evolution in HIV-1. Sanjuán R; Bordería AV Mol Biol Evol; 2011 Apr; 28(4):1333-8. PubMed ID: 21135148 [TBL] [Abstract][Full Text] [Related]
26. Getting higher on rugged landscapes: Inversion mutations open access to fitter adaptive peaks in NK fitness landscapes. Trujillo L; Banse P; Beslon G PLoS Comput Biol; 2022 Oct; 18(10):e1010647. PubMed ID: 36315581 [TBL] [Abstract][Full Text] [Related]
28. Rational evolutionary design: the theory of in vitro protein evolution. Voigt CA; Kauffman S; Wang ZG Adv Protein Chem; 2000; 55():79-160. PubMed ID: 11050933 [TBL] [Abstract][Full Text] [Related]
29. Error thresholds for quasispecies on dynamic fitness landscapes. Nilsson M; Snoad N Phys Rev Lett; 2000 Jan; 84(1):191-4. PubMed ID: 11015867 [TBL] [Abstract][Full Text] [Related]
30. Fitness landscapes and evolvability. Smith T; Husbands P; Layzell P; O'Shea M Evol Comput; 2002; 10(1):1-34. PubMed ID: 11911781 [TBL] [Abstract][Full Text] [Related]
31. Effect of Population Size and Mutation Rate on the Evolution of RNA Sequences on an Adaptive Landscape Determined by RNA Folding. Vahdati AR; Sprouffske K; Wagner A Int J Biol Sci; 2017; 13(9):1138-1151. PubMed ID: 29104505 [TBL] [Abstract][Full Text] [Related]
32. Structure formation of biopolymers is complex, their evolution may be simple. Bornberg-Bauer E Pac Symp Biocomput; 1996; ():97-108. PubMed ID: 9390226 [TBL] [Abstract][Full Text] [Related]
33. Modular evolution and increase of functional complexity in replicating RNA molecules. Manrubia SC; Briones C RNA; 2007 Jan; 13(1):97-107. PubMed ID: 17105993 [TBL] [Abstract][Full Text] [Related]
34. Inferring the conformation of RNA base pairs and triples from patterns of sequence variation. Gautheret D; Gutell RR Nucleic Acids Res; 1997 Apr; 25(8):1559-64. PubMed ID: 9092662 [TBL] [Abstract][Full Text] [Related]
35. Selection for fitness versus selection for robustness in RNA secondary structure folding. Wilke CO Evolution; 2001 Dec; 55(12):2412-20. PubMed ID: 11831657 [TBL] [Abstract][Full Text] [Related]
36. The ascent of the abundant: how mutational networks constrain evolution. Cowperthwaite MC; Economo EP; Harcombe WR; Miller EL; Meyers LA PLoS Comput Biol; 2008 Jul; 4(7):e1000110. PubMed ID: 18636097 [TBL] [Abstract][Full Text] [Related]
37. From sequences to shapes and back: a case study in RNA secondary structures. Schuster P; Fontana W; Stadler PF; Hofacker IL Proc Biol Sci; 1994 Mar; 255(1344):279-84. PubMed ID: 7517565 [TBL] [Abstract][Full Text] [Related]
38. Adaptive walks toward a moving optimum. Collins S; de Meaux J; Acquisti C Genetics; 2007 Jun; 176(2):1089-99. PubMed ID: 17435242 [TBL] [Abstract][Full Text] [Related]
39. Secondary structure as a constraint on the evolution of a plant viral satellite RNA. Fraile A; García-Arenal F J Mol Biol; 1991 Oct; 221(4):1065-9. PubMed ID: 1719213 [TBL] [Abstract][Full Text] [Related]
40. On the emergence of structural complexity in RNA replicators. Oliver CG; Reinharz V; Waldispühl J RNA; 2019 Dec; 25(12):1579-1591. PubMed ID: 31467146 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]