These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

41 related articles for article (PubMed ID: 7520531)

  • 1. Ion channels in a skeletal muscle cell line from a Duchenne muscular dystrophy patient.
    Caviedes R; Caviedes P; Liberona JL; Jaimovich E
    Muscle Nerve; 1994 Sep; 17(9):1021-8. PubMed ID: 7520531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calcium fluxes, ion currents and dihydropyridine receptors in a new immortal cell line from rat heart muscle.
    Caviedes P; Olivares E; Salas K; Caviedes R; Jaimovich E
    J Mol Cell Cardiol; 1993 Jul; 25(7):829-45. PubMed ID: 7693953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [3H]nitrendipine receptors as markers of a class of putative voltage-sensitive Ca2+ channels in normal human skeletal muscle and in muscle from Duchenne muscular dystrophy patients.
    Desnuelle C; Renaud JF; Delpont E; Serratrice G; Lazdunski M
    Muscle Nerve; 1986 Feb; 9(2):148-51. PubMed ID: 2419753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A tetrodotoxin- and Mn2(+)-insensitive Na+ current in Duchenne muscular dystrophy.
    Bkaily G; Jasmin G; Tautu C; Prochek L; Yamamoto T; Sculptoreanu A; Peyrow M; Jacques D
    Muscle Nerve; 1990 Oct; 13(10):939-48. PubMed ID: 2172811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A human skeletal muscle cell line obtained from an adult donor.
    Caviedes R; Liberona JL; Hidalgo J; Tascon S; Salas K; Jaimovich E
    Biochim Biophys Acta; 1992 Apr; 1134(3):247-55. PubMed ID: 1373077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Voltage dependent ionic currents in frog cultured skeletal myocytes.
    Lukyanenko VI; Katina IE; Nasledov GA; Lonsky AV
    Gen Physiol Biophys; 1993 Jun; 12(3):231-47. PubMed ID: 8224780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical membrane properties and ionic currents in cultured goldfish gonadotrophs.
    Van Goor F; Goldberg JI; Chang JP
    Can J Physiol Pharmacol; 1996 Jun; 74(6):729-43. PubMed ID: 8909786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage-activated ionic currents in goldfish pituitary cells.
    Price CJ; Goldberg JI; Chang JP
    Gen Comp Endocrinol; 1993 Oct; 92(1):16-30. PubMed ID: 7505247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The impact of single cell voltage clamp on the understanding of the cardiac ventricular action potential.
    Varró A; Papp JG
    Cardioscience; 1992 Sep; 3(3):131-44. PubMed ID: 1384746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Normalization of current kinetics by interaction between the alpha 1 and beta subunits of the skeletal muscle dihydropyridine-sensitive Ca2+ channel.
    Lacerda AE; Kim HS; Ruth P; Perez-Reyes E; Flockerzi V; Hofmann F; Birnbaumer L; Brown AM
    Nature; 1991 Aug; 352(6335):527-30. PubMed ID: 1650913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupling of human nicotinic acetylcholine receptors alpha 7 to calcium channels in GH3 cells.
    Feuerbach D; Lingenhöhl K; Dobbins P; Mosbacher J; Corbett N; Nozulak J; Hoyer D
    Neuropharmacology; 2005 Feb; 48(2):215-27. PubMed ID: 15695160
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single skinned muscle fibers in Duchenne muscular dystrophy generate normal force.
    Horowits R; Dalakas MC; Podolsky RJ
    Ann Neurol; 1990 Jun; 27(6):636-41. PubMed ID: 2360800
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of L-type Ca2+ channels in clonal rat pituitary cells by membrane depolarization.
    Liu J; Bangalore R; Rutledge A; Triggle DJ
    Mol Pharmacol; 1994 Jun; 45(6):1198-206. PubMed ID: 8022413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein degradation in cultured skeletal muscle from Duchenne muscular dystrophy patients.
    Neville HE; Harrold S
    Muscle Nerve; 1985; 8(3):253-7. PubMed ID: 4058470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Voltage-dependent ion channels in small-cell lung cancer cells.
    Pancrazio JJ; Viglione MP; Tabbara IA; Kim YI
    Cancer Res; 1989 Nov; 49(21):5901-6. PubMed ID: 2477149
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of ion channels in the flight muscles of Drosophila.
    Salkoff L
    J Physiol (Paris); 1985; 80(4):275-82. PubMed ID: 2422356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular and functional expression of voltage-operated calcium channels during osteogenic differentiation of human mesenchymal stem cells.
    Zahanich I; Graf EM; Heubach JF; Hempel U; Boxberger S; Ravens U
    J Bone Miner Res; 2005 Sep; 20(9):1637-46. PubMed ID: 16059635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two types of calcium channels in single smooth muscle cells from rabbit ear artery studied with whole-cell and single-channel recordings.
    Benham CD; Hess P; Tsien RW
    Circ Res; 1987 Oct; 61(4 Pt 2):I10-6. PubMed ID: 2443270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calcium currents in normal and dystrophic human skeletal muscle cells in culture.
    Rivet M; Cognard C; Rideau Y; Duport G; Raymond G
    Cell Calcium; 1990 Sep; 11(8):507-14. PubMed ID: 2265427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of ion channels during differentiation of a human skeletal muscle cell line.
    Liberona JL; Caviedes P; Tascón S; Hidalgo J; Giglio JR; Sampaio SV; Caviedes R; Jaimovich E
    J Muscle Res Cell Motil; 1997 Oct; 18(5):587-98. PubMed ID: 9350011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.