These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 7521083)

  • 21. Functional mechanism of the striatum by integration of nine types of synapses which have at least seven different transmitters.
    Hassler R
    Int J Neurol; 1979; 13(1-4):94-116. PubMed ID: 45452
    [No Abstract]   [Full Text] [Related]  

  • 22. Neurotransmitters in the mammalian striatum: neuronal circuits and heterogeneity.
    Semba K; Fibiger HC; Vincent SR
    Can J Neurol Sci; 1987 Aug; 14(3 Suppl):386-94. PubMed ID: 2445456
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Group-II metabotropic glutamate receptors negatively modulate NMDA transmission at striatal cholinergic terminals: role of P/Q-type high voltage activated Ca++ channels and endogenous dopamine.
    Mela F; Marti M; Fiorentini C; Missale C; Morari M
    Mol Cell Neurosci; 2006 Feb; 31(2):284-92. PubMed ID: 16249096
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the inhibition of excitatory amino acid-induced neurotransmitter release in the rat striatum by phencyclidine-like drugs.
    Snell LD; Johnson KM
    J Pharmacol Exp Ther; 1986 Sep; 238(3):938-46. PubMed ID: 2875174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acetylcholine-dopamine balance in striatum: is it still a target for antiparkinsonian therapy?
    Calabresi P; Stefani A; Mercuri NB; Bernardi G
    EXS; 1989; 57():315-21. PubMed ID: 2533102
    [No Abstract]   [Full Text] [Related]  

  • 26. [Role of dopamine receptors in regulating glutamatergic synaptic transmission in the rat neostriatum].
    Godukhin OV; Zharikova AD; Zakharova LI
    Fiziol Zh SSSR Im I M Sechenova; 1981 Mar; 67(3):384-9. PubMed ID: 6113995
    [No Abstract]   [Full Text] [Related]  

  • 27. GluN2D-containing NMDA receptors inhibit neurotransmission in the mouse striatum through a cholinergic mechanism: implication for Parkinson's disease.
    Zhang X; Feng ZJ; Chergui K
    J Neurochem; 2014 May; 129(4):581-90. PubMed ID: 24475872
    [TBL] [Abstract][Full Text] [Related]  

  • 28. N-methyl-D-aspartate-evoked release of [3H]acetylcholine in striatal compartments of the rat: regulatory roles of dopamine and GABA.
    Blanchet F; Kemel ML; Gauchy C; Desban M; Perez S; Glowinski J
    Neuroscience; 1997 Nov; 81(1):113-27. PubMed ID: 9300405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct regulation of acetylcholine release by N-methyl-D-aspartic acid receptors in rat striatum.
    Ikarashi Y; Yuzurihara M; Takahashi A; Ishimaru H; Shiobara T; Maruyama Y
    Brain Res; 1998 Jun; 795(1-2):215-20. PubMed ID: 9622635
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibition of the electrically evoked release of [3H]acetylcholine in rat striatal slices: an experimental model for drugs that enhance dopaminergic neurotransmission.
    Baud P; Arbilla S; Langer SZ
    J Neurochem; 1985 Feb; 44(2):331-7. PubMed ID: 2981280
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heterogeneity of N-methyl-D-aspartate receptors regulating the release of dopamine and acetylcholine from striatal slices.
    Cai NS; Kiss B; Erdö SL
    J Neurochem; 1991 Dec; 57(6):2148-51. PubMed ID: 1834803
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Involvement of sigma receptors in the modulation of the glutamatergic/NMDA neurotransmission in the dopaminergic systems.
    Gronier B; Debonnel G
    Eur J Pharmacol; 1999 Mar; 368(2-3):183-96. PubMed ID: 10193654
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence for multiple dopamine receptors involved in the modulation of acetylcholine release in the striatum.
    Hársing LG; Vizi ES
    Pol J Pharmacol Pharm; 1985; 37(3):383-96. PubMed ID: 2866504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chemical transmitter systems in the brain.
    Shute CC
    Mod Trends Neurol; 1975; 6():183-203. PubMed ID: 607
    [No Abstract]   [Full Text] [Related]  

  • 35. Role of the parafascicular thalamic nucleus and N-methyl-D-aspartate transmission in the D1-dependent control of in vivo acetylcholine release in rat striatum.
    Consolo S; Baronio P; Guidi G; Di Chiara G
    Neuroscience; 1996 Mar; 71(1):157-65. PubMed ID: 8834399
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cholinergic/glutamatergic co-transmission in striatal cholinergic interneurons: new mechanisms regulating striatal computation.
    Kljakic O; Janickova H; Prado VF; Prado MAM
    J Neurochem; 2017 Aug; 142 Suppl 2():90-102. PubMed ID: 28421605
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From arousal to cognition: the integrative position of the prefrontal cortex.
    Robbins TW
    Prog Brain Res; 2000; 126():469-83. PubMed ID: 11105663
    [No Abstract]   [Full Text] [Related]  

  • 38. Behavioural effects of manipulation of basal ganglia neurotransmitters.
    Iversen SD
    Ciba Found Symp; 1984; 107():183-200. PubMed ID: 6149897
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional mu opioid receptors are expressed in cholinergic interneurons of the rat dorsal striatum: territorial specificity and diurnal variation.
    Jabourian M; Venance L; Bourgoin S; Ozon S; Pérez S; Godeheu G; Glowinski J; Kemel ML
    Eur J Neurosci; 2005 Jun; 21(12):3301-9. PubMed ID: 16026468
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Regulation of NMDA-stimulated [14C]GABA and [3H]acetylcholine release by striatal glutamate and dopamine receptors.
    Hanania T; Johnson KM
    Brain Res; 1999 Oct; 844(1-2):106-17. PubMed ID: 10536266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.