These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 7521285)

  • 41. Identical late motor responses in early Guillain-Barré syndrome: A-waves and repeater F-waves.
    Veltsista D; Kefalopoulou Z; Kintos V; Chroni E
    J Peripher Nerv Syst; 2023 Mar; 28(1):41-46. PubMed ID: 36453598
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thermal thresholds and motor sensory conduction measurements in Guillain Barré syndrome: 12-month follow-up study.
    Thomaides TN; Kerezoudi EP; Zoukos Y; Chaudhuri KR
    Eur Neurol; 1992; 32(5):274-80. PubMed ID: 1521550
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Diagnostic value of F wave changes in patients with Charcot-Marie-Tooth1A and chronic inflammatory demyelinating polyneuropathy].
    Liu XX; Zhang S; Ma Y; Sun AP; Zhang YS; Fan DS
    Beijing Da Xue Xue Bao Yi Xue Ban; 2023 Feb; 55(1):160-166. PubMed ID: 36718706
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Rapid improvement of nerve conduction in a patient with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP)].
    Saito Y; Yokota T
    Rinsho Shinkeigaku; 1993 Oct; 33(10):1066-9. PubMed ID: 8293607
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Inflammatory-demyelinating polyneuropathies.
    Feasby TE
    Neurol Clin; 1992 Aug; 10(3):651-70. PubMed ID: 1323748
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Study of F Wave Latencies, Chronodispersion and Persistence in Healthy Medical Undergraduates at BPKIHS.
    Subedi P; Limbu N; Thakur D; Khadka R; Gupta S
    Kathmandu Univ Med J (KUMJ); 2018 Jul-Sept.; 16(63):211-215. PubMed ID: 31719308
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Isolated absence of F waves and proximal axonal dysfunction in Guillain-Barré syndrome with antiganglioside antibodies.
    Kuwabara S; Ogawara K; Mizobuchi K; Koga M; Mori M; Hattori T; Yuki N
    J Neurol Neurosurg Psychiatry; 2000 Feb; 68(2):191-5. PubMed ID: 10644786
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Patterns of sensory nerve conduction abnormalities in demyelinating and axonal peripheral nerve disorders.
    Bromberg MB; Albers JW
    Muscle Nerve; 1993 Mar; 16(3):262-6. PubMed ID: 8383290
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Electrophysiological studies in the Guillain-Barré syndrome.
    McLeod JG
    Ann Neurol; 1981; 9 Suppl():20-7. PubMed ID: 6261678
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comparison of motor conduction abnormalities in lumbosacral radiculopathy and axonal polyneuropathy.
    Berger AR; Sharma K; Lipton RB
    Muscle Nerve; 1999 Aug; 22(8):1053-7. PubMed ID: 10417786
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Early electrophysiological findings in acute inflammatory demyelinating polyradiculoneuropathy variant of Guillain-Barre syndrome in the Pakistani population - a comparison with global data.
    Wali A; Kanwar D; Khan SA; Khan S
    J Peripher Nerv Syst; 2017 Dec; 22(4):451-454. PubMed ID: 29091318
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The usefulness of minimal F-wave latency and sural/radial amplitude ratio in diabetic polyneuropathy.
    Shin JB; Seong YJ; Lee HJ; Kim SH; Suk H; Lee YJ
    Yonsei Med J; 2000 Jun; 41(3):393-7. PubMed ID: 10957895
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Distinguishing acute-onset CIDP from fluctuating Guillain-Barre syndrome: a prospective study.
    Ruts L; Drenthen J; Jacobs BC; van Doorn PA;
    Neurology; 2010 May; 74(21):1680-6. PubMed ID: 20427754
    [TBL] [Abstract][Full Text] [Related]  

  • 54. F-wave latency, the most sensitive nerve conduction parameter in patients with diabetes mellitus.
    Andersen H; Stålberg E; Falck B
    Muscle Nerve; 1997 Oct; 20(10):1296-302. PubMed ID: 9324086
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sensory nerve conduction in demyelinating and axonal Guillain-Barré syndromes.
    Kuwabara S; Ogawara K; Misawa S; Mizobuchi K; Sung JY; Kitano Y; Mori M; Hattori T
    Eur Neurol; 2004; 51(4):196-8. PubMed ID: 15159599
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrophysiological patterns of diabetic polyneuropathy.
    Bagai K; Wilson JR; Khanna M; Song Y; Wang L; Fisher MA
    Electromyogr Clin Neurophysiol; 2008; 48(3-4):139-45. PubMed ID: 18551834
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Very Early Neurophysiological Study in Guillain-Barre Syndrome.
    Jin J; Hu F; Qin X; Liu X; Li M; Dang Y; Dang J
    Eur Neurol; 2018; 80(1-2):100-105. PubMed ID: 30347390
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Motor nerve inexcitability in Guillain-Barré syndrome. The spectrum of distal conduction block and axonal degeneration.
    Triggs WJ; Cros D; Gominak SC; Zuniga G; Beric A; Shahani BT; Ropper AH; Roongta SM
    Brain; 1992 Oct; 115 ( Pt 5)():1291-302. PubMed ID: 1422789
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrophysiological findings in early Guillain-Barré syndrome.
    Baraba R; Sruk A; Sragalj L; Butković-Soldo S; Bielen I
    Acta Clin Croat; 2011 Jun; 50(2):201-7. PubMed ID: 22263383
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Optimizing electrodiagnosis for Guillain-Barré syndrome: Clues from clinical practice.
    Rajabally YA; Hiew FL
    Muscle Nerve; 2017 May; 55(5):748-751. PubMed ID: 27750406
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.