These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 7521301)
1. Accumulation of reactive oxygen species and oxidation of cytokinin in germinating soybean seeds. Gidrol X; Lin WS; Dégousée N; Yip SF; Kush A Eur J Biochem; 1994 Aug; 224(1):21-8. PubMed ID: 7521301 [TBL] [Abstract][Full Text] [Related]
2. Superoxide anion and hydrogen peroxide metabolism in soybean embryonic axes during germination. Puntarulo S; Galleano M; Sanchez RA; Boveris A Biochim Biophys Acta; 1991 Jul; 1074(2):277-83. PubMed ID: 1648400 [TBL] [Abstract][Full Text] [Related]
3. Superoxide and its metabolism during germination and axis growth of Vigna radiata (L.) Wilczek seeds. Singh KL; Chaudhuri A; Kar RK Plant Signal Behav; 2014; 9(8):e29278. PubMed ID: 25763616 [TBL] [Abstract][Full Text] [Related]
4. Germination induction of dormant Avena fatua caryopses by KAR(1) and GA(3) involving the control of reactive oxygen species (H2O2 and O2(·-)) and enzymatic antioxidants (superoxide dismutase and catalase) both in the embryo and the aleurone layers. Cembrowska-Lech D; Koprowski M; Kępczyński J J Plant Physiol; 2015 Mar; 176():169-79. PubMed ID: 25618514 [TBL] [Abstract][Full Text] [Related]
5. Exogenous melatonin reduces the inhibitory effect of osmotic stress on antioxidant properties and cell ultrastructure at germination stage of soybean. Zhang M; He S; Qin B; Jin X; Wang M; Ren C; Cao L; Zhang Y PLoS One; 2020; 15(12):e0243537. PubMed ID: 33320882 [TBL] [Abstract][Full Text] [Related]
6. Exogenous 5-aminolevulenic acid promotes seed germination in Elymus nutans against oxidative damage induced by cold stress. Fu J; Sun Y; Chu X; Xu Y; Hu T PLoS One; 2014; 9(9):e107152. PubMed ID: 25207651 [TBL] [Abstract][Full Text] [Related]
7. Production and scavenging of reactive oxygen species in Fagus sylvatica seeds during storage at varied temperature and humidity. Pukacka S; Ratajczak E J Plant Physiol; 2005 Aug; 162(8):873-85. PubMed ID: 16146313 [TBL] [Abstract][Full Text] [Related]
8. Nitrogen-dependent accumulation of cytokinins in root and the translocation to leaf: implication of cytokinin species that induces gene expression of maize response regulator. Takei K; Sakakibara H; Taniguchi M; Sugiyama T Plant Cell Physiol; 2001 Jan; 42(1):85-93. PubMed ID: 11158447 [TBL] [Abstract][Full Text] [Related]
9. Role of Cu/Zn-superoxide dismutase in xenobiotic activation. II. Biological effects resulting from the Cu/Zn-superoxide dismutase-accelerated oxidation of the benzene metabolite 1,4-hydroquinone. Li Y; Kuppusamy P; Zweir JL; Trush MA Mol Pharmacol; 1996 Mar; 49(3):412-21. PubMed ID: 8643080 [TBL] [Abstract][Full Text] [Related]
10. Role of reactive oxygen species in the regulation of Arabidopsis seed dormancy. Leymarie J; Vitkauskaité G; Hoang HH; Gendreau E; Chazoule V; Meimoun P; Corbineau F; El-Maarouf-Bouteau H; Bailly C Plant Cell Physiol; 2012 Jan; 53(1):96-106. PubMed ID: 21937678 [TBL] [Abstract][Full Text] [Related]
11. Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds. Bhardwaj J; Anand A; Nagarajan S Plant Physiol Biochem; 2012 Aug; 57():67-73. PubMed ID: 22683465 [TBL] [Abstract][Full Text] [Related]
12. Proteomic profiling and redox status alteration of recalcitrant tea (Camellia sinensis) seed in response to desiccation. Chen Q; Yang L; Ahmad P; Wan X; Hu X Planta; 2011 Mar; 233(3):583-92. PubMed ID: 21120520 [TBL] [Abstract][Full Text] [Related]
13. Movement to bark and metabolism of xylem cytokinins in stems of Lupinus angustifolius. Zhang R; Letham DS; Willcocks DA Phytochemistry; 2002 Jul; 60(5):483-8. PubMed ID: 12052514 [TBL] [Abstract][Full Text] [Related]
14. Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. Zhang H; Hu LY; Hu KD; He YD; Wang SH; Luo JP J Integr Plant Biol; 2008 Dec; 50(12):1518-29. PubMed ID: 19093970 [TBL] [Abstract][Full Text] [Related]
15. Metabolic Interference of sod gene mutations on catalase activity in Escherichia coli exposed to Gramoxone® (paraquat) herbicide. Gravina F; Dobrzanski T; Olchanheski LR; Galvão CW; Reche PM; Pileggi SA; Azevedo RA; Sadowsky MJ; Pileggi M Ecotoxicol Environ Saf; 2017 May; 139():89-96. PubMed ID: 28113116 [TBL] [Abstract][Full Text] [Related]
16. Oxidative metabolism-related changes in cryogenically stored neem (Azadirachta indica A. Juss) seeds. Varghese B; Naithani SC J Plant Physiol; 2008 May; 165(7):755-65. PubMed ID: 17765361 [TBL] [Abstract][Full Text] [Related]
17. A comparative study of water distribution, free radical production and activation of antioxidative metabolism in germinating pea seeds. Wojtyla Ł; Garnczarska M; Zalewski T; Bednarski W; Ratajczak L; Jurga S J Plant Physiol; 2006 Dec; 163(12):1207-20. PubMed ID: 16904793 [TBL] [Abstract][Full Text] [Related]
18. The production, localization and spreading of reactive oxygen species contributes to the low vitality of long-term stored common beech (Fagus sylvatica L.) seeds. Ratajczak E; Małecka A; Bagniewska-Zadworna A; Kalemba EM J Plant Physiol; 2015 Feb; 174():147-56. PubMed ID: 25462977 [TBL] [Abstract][Full Text] [Related]
19. Enhancing the activity and stability of Mn-superoxide dismutase by one-by-one ligation to catalase. Li R; Zhou X; Liu D; Feng W Free Radic Biol Med; 2018 Dec; 129():138-145. PubMed ID: 30227270 [TBL] [Abstract][Full Text] [Related]
20. Unveiling the photoelectrocatalytic inactivation mechanism of Escherichia coli: Convincing evidence from responses of parent and anti-oxidation single gene knockout mutants. Sun H; Li G; An T; Zhao H; Wong PK Water Res; 2016 Jan; 88():135-143. PubMed ID: 26492340 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]