These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 7521797)
1. Suppression of a mitochondrial point mutation in a tRNA gene can cast light on the mechanisms of 3' end-processing. Rinaldi T; Francisci S; Zennaro E; Frontali L; Bolotin-Fukuhara M Curr Genet; 1994 May; 25(5):451-5. PubMed ID: 7521797 [TBL] [Abstract][Full Text] [Related]
2. Identification of nuclear genes which participate to mitochondrial translation in Saccharomyces cerevisiae. Valens M; Rinaldi T; Daignan-Fornier B; Bolotin-Fukuhara M Biochimie; 1991 Dec; 73(12):1525-32. PubMed ID: 1725263 [TBL] [Abstract][Full Text] [Related]
3. Structure and transcription of the mitochondrial genome in heteroplasmic strains of Saccharomyces cerevisiae. Kang YW; Miller DL Nucleic Acids Res; 1989 Nov; 17(21):8595-609. PubMed ID: 2479907 [TBL] [Abstract][Full Text] [Related]
4. Ts mutations in mitochondrial tRNA genes: characterization and effects of two point mutations in the mitochondrial gene for tRNAphe in Saccharomyces cerevisiae. Francisci S; Bohn C; Frontali L; Bolotin-Fukuhara M Curr Genet; 1998 Feb; 33(2):110-6. PubMed ID: 9506898 [TBL] [Abstract][Full Text] [Related]
5. A point mutation in a mitochondrial tRNA gene abolishes its 3' end processing. Zennaro E; Francisci S; Ragnini A; Frontali L; Bolotin-Fukuhara M Nucleic Acids Res; 1989 Jul; 17(14):5751-64. PubMed ID: 2668892 [TBL] [Abstract][Full Text] [Related]
6. Nucleo-mitochondrial interactions in Saccharomyces cerevisiae: characterization of a nuclear gene suppressing a defect in mitochondrial tRNA(Asp) processing. Rinaldi T; Gambadoro A; Francisci S; Frontali L Gene; 2003 Jan; 303():63-8. PubMed ID: 12559567 [TBL] [Abstract][Full Text] [Related]
7. Yeast aspartyl-tRNA synthetase residues interacting with tRNA(Asp) identity bases connectively contribute to tRNA(Asp) binding in the ground and transition-state complex and discriminate against non-cognate tRNAs. Eriani G; Gangloff J J Mol Biol; 1999 Aug; 291(4):761-73. PubMed ID: 10452887 [TBL] [Abstract][Full Text] [Related]
8. Combination of the loss of cmnm5U34 with the lack of s2U34 modifications of tRNALys, tRNAGlu, and tRNAGln altered mitochondrial biogenesis and respiration. Wang X; Yan Q; Guan MX J Mol Biol; 2010 Feb; 395(5):1038-48. PubMed ID: 20004207 [TBL] [Abstract][Full Text] [Related]
9. Alteration of a mitochondrial tRNA precursor 5' leader abolishes its cleavage by yeast mitochondrial RNase P. Hollingsworth MJ; Martin NC Nucleic Acids Res; 1987 Nov; 15(21):8845-60. PubMed ID: 3317274 [TBL] [Abstract][Full Text] [Related]
10. Additional copies of the mitochondrial Ef-Tu and aspartyl-tRNA synthetase genes can compensate for a mutation affecting the maturation of the mitochondrial tRNAAsp. Rinaldi T; Lande R; Bolotin-Fukuhara M; Frontali L Curr Genet; 1997 Jun; 31(6):494-6. PubMed ID: 9211792 [TBL] [Abstract][Full Text] [Related]
11. Pleiotrophic effects of point mutations in yeast tRNA(Asp) on the base modification pattern. Edqvist J; Stråby KB; Grosjean H Nucleic Acids Res; 1993 Feb; 21(3):413-7. PubMed ID: 8441654 [TBL] [Abstract][Full Text] [Related]
12. A missense mutation in the nuclear gene coding for the mitochondrial aspartyl-tRNA synthetase suppresses a mitochondrial tRNA(Asp) mutation. Chiang CS; Liaw GJ Nucleic Acids Res; 2000 Apr; 28(7):1542-7. PubMed ID: 10710420 [TBL] [Abstract][Full Text] [Related]
13. Yeast as a model of human mitochondrial tRNA base substitutions: investigation of the molecular basis of respiratory defects. Montanari A; Besagni C; De Luca C; Morea V; Oliva R; Tramontano A; Bolotin-Fukuhara M; Frontali L; Francisci S RNA; 2008 Feb; 14(2):275-83. PubMed ID: 18065717 [TBL] [Abstract][Full Text] [Related]
14. Endonucleolytic cleavage of a long 3'-trailer sequence in a nuclear yeast suppressor tRNA. Furter R; Snaith M; Gillespie DE; Hall BD Biochemistry; 1992 Nov; 31(44):10817-24. PubMed ID: 1384700 [TBL] [Abstract][Full Text] [Related]
15. Pathology-related mutation A7526G (A9G) helps in the understanding of the 3D structural core of human mitochondrial tRNA(Asp). Messmer M; Gaudry A; Sissler M; Florentz C RNA; 2009 Aug; 15(8):1462-8. PubMed ID: 19535463 [TBL] [Abstract][Full Text] [Related]
16. A yeast arginine specific tRNA is a remnant aspartate acceptor. Fender A; Geslain R; Eriani G; Giegé R; Sissler M; Florentz C Nucleic Acids Res; 2004; 32(17):5076-86. PubMed ID: 15452274 [TBL] [Abstract][Full Text] [Related]
17. Mutations in yeast mt tRNAs: specific and general suppression by nuclear encoded tRNA interactors. De Luca C; Besagni C; Frontali L; Bolotin-Fukuhara M; Francisci S Gene; 2006 Aug; 377():169-76. PubMed ID: 16777356 [TBL] [Abstract][Full Text] [Related]
18. Nuclear and mitochondrial revertants of a yeast mitochondrial tRNA mutant. Kang YW; Miller DL Mol Gen Genet; 1988 Aug; 213(2-3):425-34. PubMed ID: 3054486 [TBL] [Abstract][Full Text] [Related]
19. The functional analysis of nonsense suppressors derived from in vitro engineered Saccharomyces cerevisiae tRNA(Trp) genes. Atkin AL; Riazi MA; Greer CL; Roy KL; Bell JB Gene; 1993 Nov; 134(1):57-65. PubMed ID: 8244031 [TBL] [Abstract][Full Text] [Related]
20. Binding of tobramycin leads to conformational changes in yeast tRNA(Asp) and inhibition of aminoacylation. Walter F; Pütz J; Giegé R; Westhof E EMBO J; 2002 Feb; 21(4):760-8. PubMed ID: 11847123 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]