BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 7522884)

  • 1. Positive selection of human blood cells using improved high gradient magnetic separation filters.
    Thomas TE; Richards AJ; Roath OS; Watson JH; Smith RJ; Lansdorp PM
    J Hematother; 1993; 2(3):297-303. PubMed ID: 7522884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High purity, recovery, and selection of human blood cells with a novel high gradient magnetic separator.
    Richards AJ; Roath OS; Smith RJ; Watson JH
    J Hematother; 1996 Aug; 5(4):415-26. PubMed ID: 8877717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific capture of targeted hematopoietic cells by high gradient magnetic separation by the use of ordered wire array filters and tetrameric antibody complexes linked to a dextran iron particle.
    Roath S; Thomas TE; Watson JH; Lansdorp PM; Smith RJ; Richards AJ
    Prog Clin Biol Res; 1994; 389():155-63. PubMed ID: 7535431
    [No Abstract]   [Full Text] [Related]  

  • 4. Selective separation of cells using magnetic colloids.
    Thomas TE; Lansdorp PM
    Prog Clin Biol Res; 1994; 389():65-77. PubMed ID: 7535462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic flow sorting using a model system of human lymphocytes and a colloidal magnetic label.
    Zborowski M; Moore LR; Reddy S; Chen GH; Sun L; Chalmers JJ
    ASAIO J; 1996; 42(5):M666-71. PubMed ID: 8944964
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High gradient magnetic separation of cells on the basis of expression levels of cell surface antigens.
    Thomas TE; Abraham SJ; Otter AJ; Blackmore EW; Lansdorp PM
    J Immunol Methods; 1992 Oct; 154(2):245-52. PubMed ID: 1401958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Filter Buffy Coats (FBC): a source of peripheral blood leukocytes recovered from leukocyte depletion filters.
    Meyer TP; Zehnter I; Hofmann B; Zaisserer J; Burkhart J; Rapp S; Weinauer F; Schmitz J; Illert WE
    J Immunol Methods; 2005 Dec; 307(1-2):150-66. PubMed ID: 16325197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic-based microfluidic platform for biomolecular separation.
    Ramadan Q; Samper V; Poenar D; Yu C
    Biomed Microdevices; 2006 Jun; 8(2):151-8. PubMed ID: 16688574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimized high gradient magnetic separation for isolation of Plasmodium-infected red blood cells.
    Bhakdi SC; Ottinger A; Somsri S; Sratongno P; Pannadaporn P; Chimma P; Malasit P; Pattanapanyasat K; Neumann HP
    Malar J; 2010 Feb; 9():38. PubMed ID: 20122252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 2D modeling and preliminary in vitro investigation of a prototype high gradient magnetic separator for biomedical applications.
    Chen H; Kaminski MD; Rosengart AJ
    Med Eng Phys; 2008 Jan; 30(1):1-8. PubMed ID: 17400018
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategy of leukocyte filtration for immunomodulation: development of stainless steel leukocyte filter.
    Yamaji K; Yamane S; Niimi Y; Sueoka A; Nosé Y
    Ther Apher; 1997 Feb; 1(1):63-6. PubMed ID: 10225784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lymphocyte fractionation using immunomagnetic colloid and a dipole magnet flow cell sorter.
    Moore LR; Zborowski M; Sun L; Chalmers JJ
    J Biochem Biophys Methods; 1998 Sep; 37(1-2):11-33. PubMed ID: 9825297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation of anti-CD4 monoclonal antibody-conjugated magnetic poly(glycidyl methacrylate) particles and their application on CD4+ lymphocyte separation.
    Pimpha N; Chaleawlert-umpon S; Chruewkamlow N; Kasinrerk W
    Talanta; 2011 Mar; 84(1):89-97. PubMed ID: 21315903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous, flow-through immunomagnetic cell sorting in a quadrupole field.
    Sun L; Zborowski M; Moore LR; Chalmers JJ
    Cytometry; 1998 Dec; 33(4):469-75. PubMed ID: 9845442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Application of immunomagnetic screening strategy for separation of CD4+ and CD8+ T cell subpopulations of peripheral blood].
    Feng MJ; Qiu C; Lai YJ; Chen CX; Li FR
    Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2005 Apr; 13(2):205-9. PubMed ID: 15854277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid cell isolation by magnetic flow sorting for applications in tissue engineering.
    Zborowski M; Sun L; Moore LR; Chalmers JJ
    ASAIO J; 1999; 45(3):127-30. PubMed ID: 10360709
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient purification of CD4+ lymphocytes from peripheral blood progenitor cell products using affinity bead acoustophoresis.
    Lenshof A; Jamal A; Dykes J; Urbansky A; Astrand-Grundström I; Laurell T; Scheding S
    Cytometry A; 2014 Nov; 85(11):933-41. PubMed ID: 25053536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new density gradient for the separation of large quantities of rosette-positive and rosette-negative cells.
    Dooley DC; Law P; Alsop P
    Exp Hematol; 1987 Mar; 15(3):296-303. PubMed ID: 3493175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Separation of cells labeled with immunospecific iron dextran microspheres using high gradient magnetic chromatography.
    Molday RS; Molday LL
    FEBS Lett; 1984 May; 170(2):232-8. PubMed ID: 6373372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct magnetic separation of immune cells from whole blood using bacterial magnetic particles displaying protein G.
    Takahashi M; Yoshino T; Takeyama H; Matsunaga T
    Biotechnol Prog; 2009; 25(1):219-26. PubMed ID: 19197981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.