These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 7523324)
1. Chemical synthesis and characterization of peptides and oligomeric proteins designed to form transmembrane ion channels. Iwamoto T; Grove A; Montal MO; Montal M; Tomich JM Int J Pept Protein Res; 1994 Jun; 43(6):597-607. PubMed ID: 7523324 [TBL] [Abstract][Full Text] [Related]
2. Synthetic peptides and four-helix bundle proteins as model systems for the pore-forming structure of channel proteins. I. Transmembrane segment M2 of the nicotinic cholinergic receptor channel is a key pore-lining structure. Oblatt-Montal M; Bühler LK; Iwamoto T; Tomich JM; Montal M J Biol Chem; 1993 Jul; 268(20):14601-7. PubMed ID: 7686900 [TBL] [Abstract][Full Text] [Related]
3. Design, synthesis and functional characterization of a pentameric channel protein that mimics the presumed pore structure of the nicotinic cholinergic receptor. Montal MO; Iwamoto T; Tomich JM; Montal M FEBS Lett; 1993 Apr; 320(3):261-6. PubMed ID: 7681786 [TBL] [Abstract][Full Text] [Related]
4. Design of a functional calcium channel protein: inferences about an ion channel-forming motif derived from the primary structure of voltage-gated calcium channels. Grove A; Tomich JM; Iwamoto T; Montal M Protein Sci; 1993 Nov; 2(11):1918-30. PubMed ID: 7505682 [TBL] [Abstract][Full Text] [Related]
5. Bundles of amphipathic transmembrane alpha-helices as a structural motif for ion-conducting channel proteins: studies on sodium channels and acetylcholine receptors. Oiki S; Madison V; Montal M Proteins; 1990; 8(3):226-36. PubMed ID: 2177892 [TBL] [Abstract][Full Text] [Related]
6. Synthetic peptides and four-helix bundle proteins as model systems for the pore-forming structure of channel proteins. II. Transmembrane segment M2 of the brain glycine receptor is a plausible candidate for the pore-lining structure. Reddy GL; Iwamoto T; Tomich JM; Montal M J Biol Chem; 1993 Jul; 268(20):14608-15. PubMed ID: 7686901 [TBL] [Abstract][Full Text] [Related]
7. Synporins--synthetic proteins that emulate the pore structure of biological ionic channels. Montal M; Montal MS; Tomich JM Proc Natl Acad Sci U S A; 1990 Sep; 87(18):6929-33. PubMed ID: 1698285 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and purification of hydrophobic peptides for use in biomimetic ion channels. Kassim SY; Restrepo IM; Kalivretenos AG J Chromatogr A; 1998 Aug; 816(1):11-20. PubMed ID: 9741096 [TBL] [Abstract][Full Text] [Related]
9. M2 delta, a candidate for the structure lining the ionic channel of the nicotinic cholinergic receptor. Oiki S; Danho W; Madison V; Montal M Proc Natl Acad Sci U S A; 1988 Nov; 85(22):8703-7. PubMed ID: 2460876 [TBL] [Abstract][Full Text] [Related]
10. Chemical synthesis and single channel properties of tetrameric and pentameric TASPs (template-assembled synthetic proteins) derived from the transmembrane domain of HIV virus protein u (Vpu). Becker CF; Oblatt-Montal M; Kochendoerfer GG; Montal M J Biol Chem; 2004 Apr; 279(17):17483-9. PubMed ID: 14752102 [TBL] [Abstract][Full Text] [Related]
11. Peptide ion channels: design and creation of function. Futaki S Biopolymers; 1998; 47(1):75-81. PubMed ID: 9692328 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of a template-associated peptide designed as a transmembrane ion channel former. Chaloin L; Méry J; Van Mau N; Divita G; Heitz F J Pept Sci; 1999 Sep; 5(9):381-91. PubMed ID: 10526880 [TBL] [Abstract][Full Text] [Related]
13. Molecular dynamics simulations of homo-oligomeric bundles embedded within a lipid bilayer. Nguyen TH; Liu Z; Moore PB Biophys J; 2013 Oct; 105(7):1569-80. PubMed ID: 24094398 [TBL] [Abstract][Full Text] [Related]
14. Formation of ion channels in lipid bilayers by a peptide with the predicted transmembrane sequence of botulinum neurotoxin A. Oblatt-Montal M; Yamazaki M; Nelson R; Montal M Protein Sci; 1995 Aug; 4(8):1490-7. PubMed ID: 8520474 [TBL] [Abstract][Full Text] [Related]
15. Ion channel formation by synthetic analogues of staphylococcal delta-toxin. Kerr ID; Dufourcq J; Rice JA; Fredkin DR; Sansom MS Biochim Biophys Acta; 1995 Jun; 1236(2):219-27. PubMed ID: 7540870 [TBL] [Abstract][Full Text] [Related]
16. Ion channels formed by a highly charged peptide. Ghosh P; Stroud RM Biochemistry; 1991 Apr; 30(14):3551-7. PubMed ID: 1707312 [TBL] [Abstract][Full Text] [Related]
17. Structure-function relationships in helix-bundle channels probed via total chemical synthesis of alamethicin dimers: effects of a Gln7 to Asn7 mutation. Jaikaran DC; Biggin PC; Wenschuh H; Sansom MS; Woolley GA Biochemistry; 1997 Nov; 36(45):13873-81. PubMed ID: 9374865 [TBL] [Abstract][Full Text] [Related]
18. Hydrophilic surface maps of channel-forming peptides: analysis of amphipathic helices. Kerr ID; Sansom MS Eur Biophys J; 1993; 22(4):269-77. PubMed ID: 7504619 [TBL] [Abstract][Full Text] [Related]
19. A structural model of the acetylcholine receptor channel based on partition energy and helix packing calculations. Guy HR Biophys J; 1984 Jan; 45(1):249-61. PubMed ID: 6324907 [TBL] [Abstract][Full Text] [Related]
20. Probing the structure of the affinity-purified and lipid-reconstituted torpedo nicotinic acetylcholine receptor. Hamouda AK; Chiara DC; Blanton MP; Cohen JB Biochemistry; 2008 Dec; 47(48):12787-94. PubMed ID: 18991407 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]