BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 7523429)

  • 21. Role of nitric oxide in angiotensin IV-induced increases in cerebral blood flow.
    Kramár EA; Krishnan R; Harding JW; Wright JW
    Regul Pept; 1998 Jun; 74(2-3):185-92. PubMed ID: 9712180
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nitric oxide synthase does not contribute to cerebral autoregulatory phenomenon in anesthetized dogs.
    Saito S; Wilson DA; Hanley DF; Traystman RJ
    J Auton Nerv Syst; 1994 Sep; 49 Suppl():S73-6. PubMed ID: 7530735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nitric oxide (NO) is an endogenous anticonvulsant but not a mediator of the increase in cerebral blood flow accompanying bicuculline-induced seizures in rats.
    Wang Q; Theard MA; Pelligrino DA; Baughman VL; Hoffman WE; Albrecht RF; Cwik M; Paulson OB; Lassen NA
    Brain Res; 1994 Sep; 658(1-2):192-8. PubMed ID: 7530579
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The effect of hemorrhagic hypotension and retransfusion and 7-nitro-indazole on rCBF, NOS catalytic activity, and cortical NO content in the cat.
    Kovách AG; Lohinai Z; Marczis J; Balla I; Dawson TM; Snyder SH
    Ann N Y Acad Sci; 1994 Nov; 738():348-68. PubMed ID: 7530422
    [No Abstract]   [Full Text] [Related]  

  • 25. Hemoglobin, NO, and 20-HETE interactions in mediating cerebral vasoconstriction following SAH.
    Takeuchi K; Miyata N; Renic M; Harder DR; Roman RJ
    Am J Physiol Regul Integr Comp Physiol; 2006 Jan; 290(1):R84-9. PubMed ID: 16166205
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of nitric oxide in modulating brain activity and blood flow during seizure.
    Theard MA; Baughman VL; Wang Q; Pelligrino DA; Albrecht RF
    Neuroreport; 1995 Apr; 6(6):921-4. PubMed ID: 7542039
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High salt diet impairs cerebral blood flow regulation via salt-induced angiotensin II suppression.
    Allen LA; Schmidt JR; Thompson CT; Carlson BE; Beard DA; Lombard JH
    Microcirculation; 2019 Apr; 26(3):e12518. PubMed ID: 30481399
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hypothermia reduces early hypoperfusion and metabolic alterations during the acute phase of massive subarachnoid hemorrhage: a laser-Doppler-flowmetry and microdialysis study in rats.
    Schubert GA; Poli S; Mendelowitsch A; Schilling L; Thomé C
    J Neurotrauma; 2008 May; 25(5):539-48. PubMed ID: 18352824
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Angiotensin II attenuates functional hyperemia in the mouse somatosensory cortex.
    Kazama K; Wang G; Frys K; Anrather J; Iadecola C
    Am J Physiol Heart Circ Physiol; 2003 Nov; 285(5):H1890-9. PubMed ID: 12907423
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in cochlear blood flow due to intra-arterial infusions of angiotensin II (3-8) (angiotensin IV) in guinea pigs.
    Coleman JK; Lee JI; Miller JM; Nuttall AL
    Hear Res; 1998 May; 119(1-2):61-8. PubMed ID: 9641319
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 20-HETE contributes to the acute fall in cerebral blood flow after subarachnoid hemorrhage in the rat.
    Kehl F; Cambj-Sapunar L; Maier KG; Miyata N; Kametani S; Okamoto H; Hudetz AG; Schulte ML; Zagorac D; Harder DR; Roman RJ
    Am J Physiol Heart Circ Physiol; 2002 Apr; 282(4):H1556-65. PubMed ID: 11893593
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Contribution of nitric oxide to cerebral blood flow regulation under hypoxia in rats.
    Takuwa H; Matsuura T; Bakalova R; Obata T; Kanno I
    J Physiol Sci; 2010 Nov; 60(6):399-406. PubMed ID: 20927617
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of volatile anesthetics on cerebrocortical laser Doppler flow: hyperemia, autoregulation, carbon dioxide response, flow oscillations, and role of nitric oxide.
    Hudetz AG; Lee JG; Smith JJ; Bosnjak ZJ; Kampine JP
    Adv Pharmacol; 1994; 31():577-93. PubMed ID: 7873439
    [No Abstract]   [Full Text] [Related]  

  • 34. Estrous cycle-dependent neurovascular dysfunction induced by angiotensin II in the mouse neocortex.
    Capone C; Anrather J; Milner TA; Iadecola C
    Hypertension; 2009 Aug; 54(2):302-7. PubMed ID: 19506098
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental models of subarachnoid hemorrhage in the rat: a refinement of the endovascular filament model.
    Schwartz AY; Masago A; Sehba FA; Bederson JB
    J Neurosci Methods; 2000 Mar; 96(2):161-7. PubMed ID: 10720681
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of position 4 in angiotensin II antagonism: a structure-activity study.
    Samanen J; Cash T; Narindray D; Brandeis E; Yellin T; Regoli D
    J Med Chem; 1989 Jun; 32(6):1366-70. PubMed ID: 2724307
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regional cerebral blood flow after subarachnoid hemorrhage (SAH) in the rat.
    Nemoto EM; Kofke WA; Yonas H; Williams D; Rose M; Rao G; Simplaceanau E
    Adv Exp Med Biol; 1997; 411():313-8. PubMed ID: 9269442
    [No Abstract]   [Full Text] [Related]  

  • 38. Acute decrease of cerebrocortical microflow and lack of carbon dioxide reactivity following subarachnoid haemorrhage in the rat.
    Jarus-Dziedzic K; Czernicki Z; Koźniewska E
    Acta Neurochir Suppl; 2003; 86():473-6. PubMed ID: 14753489
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Late effects of subarachnoid haemorrhage on the response of the primate cerebral circulation to drug-induced changes in arterial blood pressure.
    Pickard JD; Boisvert DP; Graham DI; Fitch W
    J Neurol Neurosurg Psychiatry; 1979 Oct; 42(10):899-903. PubMed ID: 117081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hyperglycemic action of angiotensin II in freely moving rats.
    Machado LJ; Mihessen-Neto I; Marubayashi U; Reis AM; Coimbra CC
    Peptides; 1995; 16(3):479-83. PubMed ID: 7651902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.