These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 752349)
41. The effect of chronic alcohol administration on fatty acid metabolism and pyruvate oxidation of heart mitochondria. Williams ES; Li TK J Mol Cell Cardiol; 1977 Dec; 9(12):1003-11. PubMed ID: 563474 [No Abstract] [Full Text] [Related]
42. A continuous recording technique for the measurement of carbon dioxide, and its application to mitochondrial oxidation and decarboxylation reactions. Nicholls DG; Shepherd D; Garland PB Biochem J; 1967 Jun; 103(3):677-91. PubMed ID: 4292835 [TBL] [Abstract][Full Text] [Related]
43. The effect of insulin and growth hormone on the flux of tracer from labelled lactate in perfused rat heart. Mowbray J; Ottaway JH Eur J Biochem; 1973 Jul; 36(2):369-79. PubMed ID: 4354336 [No Abstract] [Full Text] [Related]
44. Ketogenesis in isolated rat liver mitochondria. II. Factors affecting the rate of beta-oxidation. Lopes-Cardozo M; van den Bergh SG Biochim Biophys Acta; 1974 Jul; 357(1):43-52. PubMed ID: 4414031 [No Abstract] [Full Text] [Related]
45. Control of oxidative phosphorylation in rat muscle mitochondria: implications for mitochondrial myopathies. Letellier T; Malgat M; Mazat JP Biochim Biophys Acta; 1993 Feb; 1141(1):58-64. PubMed ID: 8382080 [TBL] [Abstract][Full Text] [Related]
46. Specific inhibition of mitochondrial fatty acid oxidation by 2-bromopalmitate and its coenzyme A and carnitine esters. Chase JF; Tubbs PK Biochem J; 1972 Aug; 129(1):55-65. PubMed ID: 4646779 [TBL] [Abstract][Full Text] [Related]
47. Selective PPARdelta agonist treatment increases skeletal muscle lipid metabolism without altering mitochondrial energy coupling: an in vivo magnetic resonance spectroscopy study. Jucker BM; Yang D; Casey WM; Olzinski AR; Williams C; Lenhard SC; Legos JJ; Hawk CT; Sarkar SK; Newsholme SJ Am J Physiol Endocrinol Metab; 2007 Nov; 293(5):E1256-64. PubMed ID: 17726146 [TBL] [Abstract][Full Text] [Related]
48. Regulation of pyruvate oxidation in blowfly flight muscle mitochondria: requirement for ADP. Bulos BA; Thomas BJ; Shukla SP; Sacktor B Arch Biochem Biophys; 1984 Nov; 234(2):382-93. PubMed ID: 6497378 [TBL] [Abstract][Full Text] [Related]
49. Skeletal muscle mitochondria of NDUFS4-/- mice display normal maximal pyruvate oxidation and ATP production. Alam MT; Manjeri GR; Rodenburg RJ; Smeitink JA; Notebaart RA; Huynen M; Willems PH; Koopman WJ Biochim Biophys Acta; 2015; 1847(6-7):526-33. PubMed ID: 25687896 [TBL] [Abstract][Full Text] [Related]
53. Protein S-glutathionylation lowers superoxide/hydrogen peroxide release from skeletal muscle mitochondria through modification of complex I and inhibition of pyruvate uptake. Gill RM; O'Brien M; Young A; Gardiner D; Mailloux RJ PLoS One; 2018; 13(2):e0192801. PubMed ID: 29444156 [TBL] [Abstract][Full Text] [Related]
54. [Oxidation of Krebs cycle substrates by Eurytrema pancreaticum mitochondria]. Shestak EA Parazitologiia; 1977; 11(5):412-6. PubMed ID: 909726 [TBL] [Abstract][Full Text] [Related]
55. The nature of controlled respiration and its relationship to protonmotive force and proton conductance in blowfly flight-muscle mitochondria. Johnson RN; Hansford RG Biochem J; 1977 May; 164(2):305-22. PubMed ID: 195584 [TBL] [Abstract][Full Text] [Related]
56. Evidence for the role of a specific monocarboxylate transporter in the control of pyruvate oxidation by rat liver mitochondria. Mowbray J FEBS Lett; 1974 Aug; 44(3):344-7. PubMed ID: 4413336 [No Abstract] [Full Text] [Related]
57. Oxidation of branched-chain amino acids in skeletal muscle and liver of rat. Effects of octanoate and energy state. Spydevold O; Hokland B Biochim Biophys Acta; 1981 Sep; 676(3):279-88. PubMed ID: 6793084 [TBL] [Abstract][Full Text] [Related]
58. The control of tricarboxylate-cycle oxidations in blowfly flight muscle. The oxidized and reduced nicotinamide-adenine dinucleotide content of flight muscle and isolated mitochondria, the adenosine triphosphate and adenosine diphosphate content of mitochondria, and the energy status of the mitochondria during controlled respiration. Hansford RG Biochem J; 1975 Mar; 146(3):537-47. PubMed ID: 167720 [TBL] [Abstract][Full Text] [Related]
59. Oxidation of NADH via an "external" pathway in skeletal-muscle mitochondria and its possible role in the repayment of lactacid oxygen debt. Szczesna-Kaczmarek A; Litwińska D; Popinigis J Int J Biochem; 1984; 16(12):1231-5. PubMed ID: 6530010 [TBL] [Abstract][Full Text] [Related]
60. Skeletal muscle fibers in suspension: a new approach to the study of oxidative and glycolytic metabolism in differentiated muscle. Zuurveld JG; Veerkamp JH; Wirtz P Int J Biochem; 1984; 16(11):1107-14. PubMed ID: 6098493 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]