These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 7523599)

  • 21. Selective loss of [3H]kainic acid and [3H]AMPA binding in layer VI of frontal cortex in Huntington's disease.
    Wagster MV; Hedreen JC; Peyser CE; Folstein SE; Ross CA
    Exp Neurol; 1994 May; 127(1):70-5. PubMed ID: 7515353
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Binding characteristics of a potent AMPA receptor antagonist [3H]Ro 48-8587 in rat brain.
    Mutel V; Trube G; Klingelschmidt A; Messer J; Bleuel Z; Humbel U; Clifford MM; Ellis GJ; Richards JG
    J Neurochem; 1998 Jul; 71(1):418-26. PubMed ID: 9648892
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kynurenic acid analogues with improved affinity and selectivity for the glycine site on the N-methyl-D-aspartate receptor from rat brain.
    Foster AC; Kemp JA; Leeson PD; Grimwood S; Donald AE; Marshall GR; Priestley T; Smith JD; Carling RW
    Mol Pharmacol; 1992 May; 41(5):914-22. PubMed ID: 1375317
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Excitatory amino acid receptors expressed in Xenopus oocytes: agonist pharmacology.
    Verdoorn TA; Dingledine R
    Mol Pharmacol; 1988 Sep; 34(3):298-307. PubMed ID: 2901662
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure-activity studies of 6-(tetrazolylalkyl)-substituted decahydroisoquinoline-3-carboxylic acid AMPA receptor antagonists. 1. Effects of stereochemistry, chain length, and chain substitution.
    Ornstein PL; Arnold MB; Allen NK; Bleisch T; Borromeo PS; Lugar CW; Leander JD; Lodge D; Schoepp DD
    J Med Chem; 1996 May; 39(11):2219-31. PubMed ID: 8667365
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in excitatory amino acid receptor binding in the intact and decorticated rat neostriatum following insulin-induced hypoglycemia.
    Westerberg E; Wieloch TW
    J Neurochem; 1989 May; 52(5):1340-7. PubMed ID: 2565371
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dicarboxyphenylglycines antagonize AMPA- but not kainate-induced depolarizations in neonatal rat motoneurones.
    Thomas NK; Clayton P; Jane DE
    Eur J Pharmacol; 1997 Nov; 338(2):111-6. PubMed ID: 9455991
    [TBL] [Abstract][Full Text] [Related]  

  • 28. L-[3H]Glutamate binds to kainate-, NMDA- and AMPA-sensitive binding sites: an autoradiographic analysis.
    Monaghan DT; Yao D; Cotman CW
    Brain Res; 1985 Aug; 340(2):378-83. PubMed ID: 2862960
    [TBL] [Abstract][Full Text] [Related]  

  • 29. AMPA, not NMDA, activates RhoA GTPases and subsequently phosphorylates moesin.
    Kim SJ; Jeon S; Shin EY; Kim EG; Park J; Bae CD
    Exp Mol Med; 2004 Feb; 36(1):98-102. PubMed ID: 15031678
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stimulatory effects of centrally injected kainate and N-methyl-D-aspartate on gastric acid secretion in anesthetized rats.
    Tsuchiya S; Horie S; Yano S; Watanabe K
    Brain Res; 2001 Sep; 914(1-2):115-22. PubMed ID: 11578604
    [TBL] [Abstract][Full Text] [Related]  

  • 31. (2S,4R)-4-methylglutamic acid (SYM 2081): a selective, high-affinity ligand for kainate receptors.
    Zhou LM; Gu ZQ; Costa AM; Yamada KA; Mansson PE; Giordano T; Skolnick P; Jones KA
    J Pharmacol Exp Ther; 1997 Jan; 280(1):422-7. PubMed ID: 8996224
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glutamate release evoked by glutamate receptor agonists in cultured chick retina cells: modulation by arachidonic acid.
    Duarte CB; Santos PF; Sánchez-Prieto J; Carvalho AP
    J Neurosci Res; 1996 May; 44(4):363-73. PubMed ID: 8739156
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Autoradiographic localisations of glutamatergic ligand binding sites in Xenopus brain.
    Henley JM; Bond A; Barnard EA
    Neurosci Lett; 1991 Aug; 129(1):35-8. PubMed ID: 1656338
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Discrimination by added ions of ligands at ionotropic excitatory amino acid receptors insensitive to N-methyl-D-aspartate in rat brain using membrane binding techniques.
    Ogita K; Sakamoto T; Han D; Azuma Y; Yoneda Y
    Neurochem Int; 1994 Apr; 24(4):379-88. PubMed ID: 7520311
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glutamate-stimulated production of inositol phosphates is mediated by Ca2+ influx in oligodendrocyte progenitors.
    Liu HN; Molina-Holgado E; Almazan G
    Eur J Pharmacol; 1997 Nov; 338(3):277-87. PubMed ID: 9424022
    [TBL] [Abstract][Full Text] [Related]  

  • 36. AMPA (amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptors in human brain tissues.
    Sawutz DG; Krafte DS; Oleynek JJ; Ault B
    J Recept Signal Transduct Res; 1995 Jul; 15(6):829-46. PubMed ID: 7584514
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Excitatory and inhibitory amino acid neurotransmitter binding sites in the cerebellar cortex of the pigeon (Columba livia).
    Albin RL; Sakurai SY; Makowiec RL; Gilman S
    J Chem Neuroanat; 1991; 4(6):429-37. PubMed ID: 1685884
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NMDA and non-NMDA receptor-mediated release of [3H]GABA from granule cell dendrites of rat olfactory bulb.
    García Y; Ibarra C; Jaffé EH
    J Neurochem; 1995 Feb; 64(2):662-9. PubMed ID: 7530292
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pharmacological characterization of non-NMDA subtypes of glutamate receptor in the neonatal rat hemisected spinal cord in vitro.
    Zeman S; Lodge D
    Br J Pharmacol; 1992 Jun; 106(2):367-72. PubMed ID: 1382781
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transient postnatal increases in excitatory amino acid binding sites in rat ventral mesencephalon.
    Chaudieu I; Mount H; Quirion R; Boksa P
    Neurosci Lett; 1991 Dec; 133(2):267-70. PubMed ID: 1667817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.