These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 7524665)

  • 1. The 2,6-diaminopurine riboside.5-methylisocytidine wobble base pair: an isoenergetic substitution for the study of G.U pairs in RNA.
    Strobel SA; Cech TR; Usman N; Beigelman L
    Biochemistry; 1994 Nov; 33(46):13824-35. PubMed ID: 7524665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nearest neighbor parameters for inosine x uridine pairs in RNA duplexes.
    Wright DJ; Rice JL; Yanker DM; Znosko BM
    Biochemistry; 2007 Apr; 46(15):4625-34. PubMed ID: 17378583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exocyclic amine of the conserved G.U pair at the cleavage site of the Tetrahymena ribozyme contributes to 5'-splice site selection and transition state stabilization.
    Strobel SA; Cech TR
    Biochemistry; 1996 Jan; 35(4):1201-11. PubMed ID: 8573575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Minor groove recognition of the conserved G.U pair at the Tetrahymena ribozyme reaction site.
    Strobel SA; Cech TR
    Science; 1995 Feb; 267(5198):675-9. PubMed ID: 7839142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nuclear magnetic resonance spectroscopy and molecular modeling reveal that different hydrogen bonding patterns are possible for G.U pairs: one hydrogen bond for each G.U pair in r(GGCGUGCC)(2) and two for each G.U pair in r(GAGUGCUC)(2).
    Chen X; McDowell JA; Kierzek R; Krugh TR; Turner DH
    Biochemistry; 2000 Aug; 39(30):8970-82. PubMed ID: 10913310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissection of the role of the conserved G.U pair in group I RNA self-splicing.
    Knitt DS; Narlikar GJ; Herschlag D
    Biochemistry; 1994 Nov; 33(46):13864-79. PubMed ID: 7947795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis and crystal structure of an octamer RNA r(guguuuac)/r(guaggcac) with G.G/U.U tandem wobble base pairs: comparison with other tandem G.U pairs.
    Deng J; Sundaralingam M
    Nucleic Acids Res; 2000 Nov; 28(21):4376-81. PubMed ID: 11058138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The G x U wobble base pair. A fundamental building block of RNA structure crucial to RNA function in diverse biological systems.
    Varani G; McClain WH
    EMBO Rep; 2000 Jul; 1(1):18-23. PubMed ID: 11256617
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solution structures of 5-fluorouracil-substituted RNA duplexes containing G-U wobble base pairs.
    Sahasrabudhe PV; Gmeiner WH
    Biochemistry; 1997 May; 36(20):5981-91. PubMed ID: 9166768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wobble dC.dA pairing 5' to the cationic guanine N7 8,9-dihydro-8-(N7-guanyl)-9-hydroxyaflatoxin B1 adduct: implications for nontargeted AFB1 mutagenesis.
    Giri I; Stone MP
    Biochemistry; 2003 Jun; 42(23):7023-34. PubMed ID: 12795597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of wobble base pair geometry for codon degeneracy: purine-type bases at the anticodon wobble position.
    Das G; Lyngdoh RH
    J Mol Model; 2012 Aug; 18(8):3805-20. PubMed ID: 22399149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-temperature NMR studies on inosine wobble base pairs.
    Janke EM; Riechert-Krause F; Weisz K
    J Phys Chem B; 2011 Jul; 115(26):8569-74. PubMed ID: 21644523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and theoretical rationalization for the base pairing abilities of inosine, guanosine, adenosine, and their corresponding 8-oxo-7,8-dihydropurine, and 8-bromopurine analogues within A-form duplexes of RNA.
    Skinner A; Yang CH; Hincks K; Wang H; Resendiz MJE
    Biopolymers; 2020 Dec; 111(12):e23410. PubMed ID: 33216981
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of RNA hairpins closed by wobble base pairs.
    Giese MR; Betschart K; Dale T; Riley CK; Rowan C; Sprouse KJ; Serra MJ
    Biochemistry; 1998 Jan; 37(4):1094-100. PubMed ID: 9454601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics and stability of GCAA tetraloops with 2-aminopurine and purine substitutions.
    Sarzynska J; Kulinski T
    J Biomol Struct Dyn; 2005 Feb; 22(4):425-39. PubMed ID: 15588106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional compensation by particular nucleotide substitutions of a critical G*U wobble base-pair during aminoacylation of transfer RNA.
    McClain WH; Gabriel K; Bhattacharya S; Jou YY; Schneider J
    J Mol Biol; 1999 Mar; 286(4):1025-32. PubMed ID: 10047479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure, stability and in vitro RNAi activity of oligoribonucleotides containing the ribo-difluorotoluyl nucleotide: insights into substrate requirements by the human RISC Ago2 enzyme.
    Li F; Pallan PS; Maier MA; Rajeev KG; Mathieu SL; Kreutz C; Fan Y; Sanghvi J; Micura R; Rozners E; Manoharan M; Egli M
    Nucleic Acids Res; 2007; 35(19):6424-38. PubMed ID: 17881374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The loss of a hydrogen bond: Thermodynamic contributions of a non-standard nucleotide.
    Jolley EA; Znosko BM
    Nucleic Acids Res; 2017 Feb; 45(3):1479-1487. PubMed ID: 28180321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of an alternating octamer r(GUAUGUA)dC with adjacent G x U wobble pairs.
    Biswas R; Wahl MC; Ban C; Sundaralingam M
    J Mol Biol; 1997 Apr; 267(5):1149-56. PubMed ID: 9150403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Configuration of wobble base pairs having pyrimidines as anticodon wobble bases: significance for codon degeneracy.
    Das G; Lyngdoh RH
    J Biomol Struct Dyn; 2014; 32(9):1500-20. PubMed ID: 23968386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.