BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 7524729)

  • 1. B-cell prolymphocytic leukemia expressing CD13 antigen.
    Matsushita A; Nagai K; Ishikawa T; Tatsumi E; Ohno Y; Takahashi T
    Int J Hematol; 1994 Aug; 60(2):157-61. PubMed ID: 7524729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. B-cell prolymphocytic leukemia expressing discordant myeloid-associated antigens in simultaneous specimens from bone marrow and peripheral blood.
    Emery CL; Cleveland RP
    Cytometry; 1995 Sep; 22(3):243-9. PubMed ID: 8556956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Bone marrow immunophenotypes of 112 cases of lymphoid system malignant diseases].
    Ling JY; Sun XF; Yan SL; He LR; Zhen ZJ; Xia Y
    Ai Zheng; 2007 Apr; 26(4):418-22. PubMed ID: 17430665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CD3-negative, CD20-positive T-cell prolymphocytic leukemia: case report and review of the literature.
    Tamayose K; Sato N; Ando J; Sugimoto K; Oshimi K
    Am J Hematol; 2002 Dec; 71(4):331-5. PubMed ID: 12447967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antigen modulation followed by quantitative flow cytometry of B-chronic lymphocytic leukemia cells after treatment.
    Kusenda J; Babusíková O
    Neoplasma; 2004; 51(2):97-102. PubMed ID: 15190418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex karyotype including chromosomal translocation (8;14) (q24;q32) in one case with B-cell prolymphocytic leukemia.
    Crisostomo RH; Fernandez JA; Caceres W
    Leuk Res; 2007 May; 31(5):699-701. PubMed ID: 16997373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis of CD79b, CD5 and CD19 in mature B-cell lymphoproliferative disorders.
    Cabezudo E; Carrara P; Morilla R; Matutes E
    Haematologica; 1999 May; 84(5):413-8. PubMed ID: 10329919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Discordant immunophenotype of chronic B-cell lymphoproliferative disorders in simultaneous specimens from bone marrow and peripheral sites.
    Liu YC; Cleveland RP; Madelaire C; Hines JD
    Arch Pathol Lab Med; 1995 Jan; 119(1):53-8. PubMed ID: 7802554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow cytometric immunophenotyping analysis of patterns of antigen expression in non-Hodgkin's B cell lymphoma in samples obtained from different anatomic sites.
    Gervasi F; Lo Verso R; Giambanco C; Cardinale G; Tomaselli C; Pagnucco G
    Ann N Y Acad Sci; 2004 Dec; 1028():457-62. PubMed ID: 15650271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. T-cell receptor gammadelta T-cell leukemia with the morphology of T-cell prolymphocytic leukemia and a postthymic immunophenotype.
    Sugimoto T; Imoto S; Matsuo Y; Kojima K; Yasukawa M; Murayama T; Kohfuku J; Mizuno I; Yakushijin K; Sada A; Nishimura R; Koizumi T
    Ann Hematol; 2001 Dec; 80(12):749-51. PubMed ID: 11797117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Successful treatment by ranimustine (MCNU) of a patient with B-cell prolymphocytic leukemia (B-PLL)].
    Wake A; Yamasaki Y; Ogawa R; Mori N; Nagata K; Nakata K; Misago M; Izumi Y; Fujita K; Oda S
    Rinsho Ketsueki; 1993 Nov; 34(11):1464-9. PubMed ID: 8254909
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunophenotypic analysis of CD19+ precursors in normal human adult bone marrow: implications for minimal residual disease detection.
    Ciudad J; Orfao A; Vidriales B; Macedo A; Martínez A; González M; López-Berges MC; Valverde B; San Miguel JF
    Haematologica; 1998 Dec; 83(12):1069-75. PubMed ID: 9949623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow cytometry of peripheral blood and bone marrow cells from patients with hairy cell leukemia: phenotype of hairy cells, lymphocyte subsets and detection of minimal residual disease after treatment.
    Babuŝíková O; Tomová A; Kusenda J; Gyárfás J
    Neoplasma; 2001; 48(5):350-7. PubMed ID: 11845978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Analysis of immunophenotype and leukemia associated immunophenotype in 610 patients with acute myeloid leukemia].
    Liu YR; Wang YZ; Chen SS; Chang Y; Fu JY; Li LD; Wang H; Yu H; Jiang B; Huang XJ
    Zhonghua Xue Ye Xue Za Zhi; 2007 Nov; 28(11):731-6. PubMed ID: 18457262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunophenotyping of leukemias using a cluster of differentiation antibody microarray.
    Belov L; de la Vega O; dos Remedios CG; Mulligan SP; Christopherson RI
    Cancer Res; 2001 Jun; 61(11):4483-9. PubMed ID: 11389079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic myeloid leukemia: correlation between purine metabolism enzyme activities and membrane immunophenotype.
    Mesárosová A; Hrivnáková A; Klobusická M; Babusíková O
    Neoplasma; 1995; 42(1):9-14. PubMed ID: 7617076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association of B-chronic lymphocytic leukemia and acute myeloid leukemia.
    Carulli G; Marini A; Baccelli E; Lambelet P; Lari T; Azzarà A
    J Exp Clin Cancer Res; 2007 Sep; 26(3):421-4. PubMed ID: 17987806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenotypic heterogeneity of B cells in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma.
    Kampalath B; Barcos MP; Stewart C
    Am J Clin Pathol; 2003 Jun; 119(6):824-32. PubMed ID: 12817430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous expression of CD13, CD22 and CD25 is related to the expression of Fc epsilon R1 in non-lymphoid leukemia.
    Sato N; Kishi K; Toba K; Watanabe K; Itoh H; Narita M; Takahashi M; Aizawa Y
    Leuk Res; 2004 Jul; 28(7):691-8. PubMed ID: 15158090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lineage differentiation of canine lymphoma/leukemias and aberrant expression of CD molecules.
    Wilkerson MJ; Dolce K; Koopman T; Shuman W; Chun R; Garrett L; Barber L; Avery A
    Vet Immunol Immunopathol; 2005 Jul; 106(3-4):179-96. PubMed ID: 15963817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.