BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 7525052)

  • 1. CWR22: androgen-dependent xenograft model derived from a primary human prostatic carcinoma.
    Wainstein MA; He F; Robinson D; Kung HJ; Schwartz S; Giaconia JM; Edgehouse NL; Pretlow TP; Bodner DR; Kursh ED
    Cancer Res; 1994 Dec; 54(23):6049-52. PubMed ID: 7525052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CWR22: the first human prostate cancer xenograft with strongly androgen-dependent and relapsed strains both in vivo and in soft agar.
    Nagabhushan M; Miller CM; Pretlow TP; Giaconia JM; Edgehouse NL; Schwartz S; Kung HJ; de Vere White RW; Gumerlock PH; Resnick MI; Amini SB; Pretlow TG
    Cancer Res; 1996 Jul; 56(13):3042-6. PubMed ID: 8674060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a transplantable hormone-responsive human prostatic cancer xenograft TEN12 and its androgen-resistant sublines.
    Harper ME; Goddard L; Smith C; Nicholson RI
    Prostate; 2004 Jan; 58(1):13-22. PubMed ID: 14673948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22-R1.
    Amler LC; Agus DB; LeDuc C; Sapinoso ML; Fox WD; Kern S; Lee D; Wang V; Leysens M; Higgins B; Martin J; Gerald W; Dracopoli N; Cordon-Cardo C; Scher HI; Hampton GM
    Cancer Res; 2000 Nov; 60(21):6134-41. PubMed ID: 11085537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Androgen-dependent and -independent human prostate xenograft tumors as models for drug activity evaluation.
    Chen CT; Gan Y; Au JL; Wientjes MG
    Cancer Res; 1998 Jul; 58(13):2777-83. PubMed ID: 9661891
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Androgen receptor expression in androgen-independent prostate cancer is associated with increased expression of androgen-regulated genes.
    Gregory CW; Hamil KG; Kim D; Hall SH; Pretlow TG; Mohler JL; French FS
    Cancer Res; 1998 Dec; 58(24):5718-24. PubMed ID: 9865729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preclinical evaluation of targeted cytotoxic luteinizing hormone-releasing hormone analogue AN-152 in androgen-sensitive and insensitive prostate cancers.
    Letsch M; Schally AV; Szepeshazi K; Halmos G; Nagy A
    Clin Cancer Res; 2003 Oct; 9(12):4505-13. PubMed ID: 14555524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Androgen deprivation of the PC-310 [correction of prohormone convertase-310] human prostate cancer model system induces neuroendocrine differentiation.
    Jongsma J; Oomen MH; Noordzij MA; Van Weerden WM; Martens GJ; van der Kwast TH; Schröder FH; van Steenbrugge GJ
    Cancer Res; 2000 Feb; 60(3):741-8. PubMed ID: 10676662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced androgen receptor signaling correlates with the androgen-refractory growth in a newly established MDA PCa 2b-hr human prostate cancer cell subline.
    Hara T; Nakamura K; Araki H; Kusaka M; Yamaoka M
    Cancer Res; 2003 Sep; 63(17):5622-8. PubMed ID: 14500404
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microarray analysis of prostate cancer progression to reduced androgen dependence: studies in unique models contrasts early and late molecular events.
    Sirotnak FM; She Y; Khokhar NZ; Hayes P; Gerald W; Scher HI
    Mol Carcinog; 2004 Nov; 41(3):150-63. PubMed ID: 15390081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo progression of LAPC-9 and LNCaP prostate cancer models to androgen independence is associated with increased expression of insulin-like growth factor I (IGF-I) and IGF-I receptor (IGF-IR).
    Nickerson T; Chang F; Lorimer D; Smeekens SP; Sawyers CL; Pollak M
    Cancer Res; 2001 Aug; 61(16):6276-80. PubMed ID: 11507082
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a novel androgen receptor mutation in a relapsed CWR22 prostate cancer xenograft and cell line.
    Tepper CG; Boucher DL; Ryan PE; Ma AH; Xia L; Lee LF; Pretlow TG; Kung HJ
    Cancer Res; 2002 Nov; 62(22):6606-14. PubMed ID: 12438256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. TabBO: a model reflecting common molecular features of androgen-independent prostate cancer.
    Navone NM; Rodriquez-Vargas MC; Benedict WF; Troncoso P; McDonnell TJ; Zhou JH; Luthra R; Logothetis CJ
    Clin Cancer Res; 2000 Mar; 6(3):1190-7. PubMed ID: 10741751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppression of LNCaP prostate cancer xenograft tumors by a prostate-specific protein tyrosine phosphatase, prostatic acid phosphatase.
    Igawa T; Lin FF; Rao P; Lin MF
    Prostate; 2003 Jun; 55(4):247-58. PubMed ID: 12712404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BM18: A novel androgen-dependent human prostate cancer xenograft model derived from a bone metastasis.
    McCulloch DR; Opeskin K; Thompson EW; Williams ED
    Prostate; 2005 Sep; 65(1):35-43. PubMed ID: 15800936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of an androgen receptor-null model for identifying the initiation site for androgen stimulation of proliferation and suppression of programmed (apoptotic) death of PC-82 human prostate cancer cells.
    Gao J; Isaacs JT
    Cancer Res; 1998 Aug; 58(15):3299-306. PubMed ID: 9699659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NE-10 neuroendocrine cancer promotes the LNCaP xenograft growth in castrated mice.
    Jin RJ; Wang Y; Masumori N; Ishii K; Tsukamoto T; Shappell SB; Hayward SW; Kasper S; Matusik RJ
    Cancer Res; 2004 Aug; 64(15):5489-95. PubMed ID: 15289359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antiandrogen bicalutamide promotes tumor growth in a novel androgen-dependent prostate cancer xenograft model derived from a bicalutamide-treated patient.
    Yoshida T; Kinoshita H; Segawa T; Nakamura E; Inoue T; Shimizu Y; Kamoto T; Ogawa O
    Cancer Res; 2005 Nov; 65(21):9611-6. PubMed ID: 16266977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Androgen deprivation induces selective outgrowth of aggressive hormone-refractory prostate cancer clones expressing distinct cellular and molecular properties not present in parental androgen-dependent cancer cells.
    Tso CL; McBride WH; Sun J; Patel B; Tsui KH; Paik SH; Gitlitz B; Caliliw R; van Ophoven A; Wu L; deKernion J; Belldegrun A
    Cancer J; 2000; 6(4):220-33. PubMed ID: 11038142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Id-1 expression induces androgen-independent prostate cancer cell growth through activation of epidermal growth factor receptor (EGF-R).
    Ling MT; Wang X; Lee DT; Tam PC; Tsao SW; Wong YC
    Carcinogenesis; 2004 Apr; 25(4):517-25. PubMed ID: 14688027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.