These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 7525101)

  • 1. Wave-front curvature as a cause of slow conduction and block in isolated cardiac muscle.
    Cabo C; Pertsov AM; Baxter WT; Davidenko JM; Gray RA; Jalife J
    Circ Res; 1994 Dec; 75(6):1014-28. PubMed ID: 7525101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Numerical Simulation of Propagation of Electric Excitation in the Heart Wall Taking into Account Its Fibrous-Laminar Structure].
    Vasserman IN; Matveenko VP; Shardakov IN; Shestakov AP
    Biofizika; 2015; 60(4):748-57. PubMed ID: 26394475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of barriers on propagation of action potentials in two-dimensional cardiac tissue. A computer simulation study.
    Maglaveras N; Offner F; van Capelle FJ; Allessie MA; Sahakian AV
    J Electrocardiol; 1995 Jan; 28(1):17-31. PubMed ID: 7897334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anisotropic activation spread in heart cell monolayers assessed by high-resolution optical mapping. Role of tissue discontinuities.
    Fast VG; Darrow BJ; Saffitz JE; Kléber AG
    Circ Res; 1996 Jul; 79(1):115-27. PubMed ID: 8925559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Block of impulse propagation at an abrupt tissue expansion: evaluation of the critical strand diameter in 2- and 3-dimensional computer models.
    Fast VG; Kléber AG
    Cardiovasc Res; 1995 Sep; 30(3):449-59. PubMed ID: 7585837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spiral waves in two-dimensional models of ventricular muscle: formation of a stationary core.
    Beaumont J; Davidenko N; Davidenko JM; Jalife J
    Biophys J; 1998 Jul; 75(1):1-14. PubMed ID: 9649363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directional differences in excitability and margin of safety for propagation in sheep ventricular epicardial muscle.
    Delgado C; Steinhaus B; Delmar M; Chialvo DR; Jalife J
    Circ Res; 1990 Jul; 67(1):97-110. PubMed ID: 2364498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic conduction properties in canine atria analyzed by high-resolution optical mapping: preferential direction of conduction block changes from longitudinal to transverse with increasing age.
    Koura T; Hara M; Takeuchi S; Ota K; Okada Y; Miyoshi S; Watanabe A; Shiraiwa K; Mitamura H; Kodama I; Ogawa S
    Circulation; 2002 Apr; 105(17):2092-8. PubMed ID: 11980690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Change in conduction velocity due to fiber curvature in cultured neonatal rat ventricular myocytes.
    Bourgeois EB; Fast VG; Collins RL; Gladden JD; Rogers JM
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):855-61. PubMed ID: 19272891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anisotropy, fiber curvature, and bath loading effects on activation in thin and thick cardiac tissue preparations: simulations in a three-dimensional bidomain model.
    Henriquez CS; Muzikant AL; Smoak CK
    J Cardiovasc Electrophysiol; 1996 May; 7(5):424-44. PubMed ID: 8722588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epicardial fiber organization in swine right ventricle and its impact on propagation.
    Vetter FJ; Simons SB; Mironov S; Hyatt CJ; Pertsov AM
    Circ Res; 2005 Feb; 96(2):244-51. PubMed ID: 15618536
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of termination of reentrant activity in ventricular fibrillation.
    Cha YM; Birgersdotter-Green U; Wolf PL; Peters BB; Chen PS
    Circ Res; 1994 Mar; 74(3):495-506. PubMed ID: 8118958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of wavefront curvature in propagation of cardiac impulse.
    Fast VG; Kléber AG
    Cardiovasc Res; 1997 Feb; 33(2):258-71. PubMed ID: 9074688
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonuniform muscle fiber orientation causes spiral wave drift in a finite element model of cardiac action potential propagation.
    Rogers JM; McCulloch AD
    J Cardiovasc Electrophysiol; 1994 Jun; 5(6):496-509. PubMed ID: 8087294
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intramural wave propagation in cardiac tissue: asymptotic solutions and cusp waves.
    Bernus O; Wellner M; Pertsov AM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061913. PubMed ID: 15697408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directional characteristics of action potential propagation in cardiac muscle. A model study.
    Leon LJ; Roberge FA
    Circ Res; 1991 Aug; 69(2):378-95. PubMed ID: 1860179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anisotropic reentry in a perfused 2-dimensional layer of rabbit ventricular myocardium.
    Schalij MJ; Boersma L; Huijberts M; Allessie MA
    Circulation; 2000 Nov; 102(21):2650-8. PubMed ID: 11085970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interdependence of virtual electrode polarization and conduction velocity during premature stimulation.
    Gray RA; Iyer A; Berenfeld O; Pertsov AM; Hyatt CJ
    J Electrocardiol; 2006 Oct; 39(4 Suppl):S13-8. PubMed ID: 17015062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of two-dimensional anisotropic cardiac reentry: effects of the wavelength on the reentry characteristics.
    Leon LJ; Roberge FA; Vinet A
    Ann Biomed Eng; 1994; 22(6):592-609. PubMed ID: 7872570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of fiber orientation and direction of impulse propagation with anatomic barriers in anisotropic canine myocardium.
    Kadish A; Shinnar M; Moore EN; Levine JH; Balke CW; Spear JF
    Circulation; 1988 Dec; 78(6):1478-94. PubMed ID: 3191601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.