These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
61 related articles for article (PubMed ID: 7525213)
1. Xenobiotic-metabolizing enzyme systems in test fish. V. Comparative studies of liver microsomal glucuronyltransferases. Iannelli MA; Marcucci I; Vittozzi L Ecotoxicol Environ Saf; 1994 Jul; 28(2):172-80. PubMed ID: 7525213 [TBL] [Abstract][Full Text] [Related]
2. Xenobiotic-metabolizing enzyme systems in test fish--IV. Comparative studies of liver microsomal and cytosolic hydrolases. Soldano S; Gramenzi F; Cirianni M; Vittozzi L Comp Biochem Physiol C Comp Pharmacol Toxicol; 1992; 101(1):117-23. PubMed ID: 1350956 [TBL] [Abstract][Full Text] [Related]
3. Studies of UDP-glucuronyltransferase activities in human liver microsomes. Bock KW; Lilienblum W; von Bahr C Drug Metab Dispos; 1984; 12(1):93-7. PubMed ID: 6141920 [TBL] [Abstract][Full Text] [Related]
4. Xenobiotic-metabolizing enzyme systems in test fish. I. Comparative studies of liver microsomal monooxygenases. Funari E; Zoppini A; Verdina A; De Angelis G; Vittozzi L Ecotoxicol Environ Saf; 1987 Feb; 13(1):24-31. PubMed ID: 3830019 [TBL] [Abstract][Full Text] [Related]
5. Xenobiotic metabolizing enzyme systems in test fish. III. Comparative studies of liver cytosolic glutathione S-transferases. Donnarumma L; De Angelis G; Gramenzi F; Vittozzi L Ecotoxicol Environ Saf; 1988 Oct; 16(2):180-6. PubMed ID: 3234293 [TBL] [Abstract][Full Text] [Related]
6. Xenobiotic metabolizing enzymes in fish: diversity, regulation and biomarkers for pollutant exposure. Monostory K; Jemnitz K; Vereczkey L Acta Physiol Hung; 1996; 84(4):369-81. PubMed ID: 9328609 [TBL] [Abstract][Full Text] [Related]
7. On the functional heterogeneity of UDP-glucuronyl transferase of mouse liver microsomes. Bansal SK; Li HC; Holmes G; Gessner T Res Commun Chem Pathol Pharmacol; 1982 Feb; 35(2):291-302. PubMed ID: 6803311 [TBL] [Abstract][Full Text] [Related]
8. [Effects of the degree of fish oil oxidation on the state of xenobiotic metabolism enzymes]. Kravchenko LV; Kuz'mina EE; Avren'eva LI; Pozdniakov AL; Kulakova SN; Levachev MM Vopr Pitan; 1994; (4):13-6. PubMed ID: 7817522 [TBL] [Abstract][Full Text] [Related]
9. Increase of UDP-glucuronosyltransferase activities toward xenobiotics during the development of hereditary hepatitis in LEC rats. Yokota H; Ikezoe H; Inaba T; Sanda D; Yuasa A; Kasai N Biochem Pharmacol; 1994 Mar; 47(6):1091-3. PubMed ID: 8147909 [TBL] [Abstract][Full Text] [Related]
10. Characterization and profiling of hepatic cytochromes P450 and phase II xenobiotic-metabolizing enzymes in beluga whales (Delphinapterus leucas) from the St. Lawrence River Estuary and the Canadian Arctic. McKinney MA; Arukwe A; De Guise S; Martineau D; Béland P; Dallaire A; Lair S; Lebeuf M; Letcher RJ Aquat Toxicol; 2004 Jul; 69(1):35-49. PubMed ID: 15210296 [TBL] [Abstract][Full Text] [Related]
11. Differential inhibition of xenobiotic-metabolizing carboxylesterases by organotins in marine fish. Al-Ghais SM; Ahmad S; Ali B Ecotoxicol Environ Saf; 2000 Jul; 46(3):258-64. PubMed ID: 10903822 [TBL] [Abstract][Full Text] [Related]
12. Localization of multiple forms of inducible cytochromes P450 in rat liver mitochondria: immunological characteristics and patterns of xenobiotic substrate metabolism. Anandatheerthavarada HK; Addya S; Dwivedi RS; Biswas G; Mullick J; Avadhani NG Arch Biochem Biophys; 1997 Mar; 339(1):136-50. PubMed ID: 9056243 [TBL] [Abstract][Full Text] [Related]
13. Regioselective glucuronidation of denopamine: marked species differences and identification of human udp-glucuronosyltransferase isoform. Kaji H; Kume T Drug Metab Dispos; 2005 Mar; 33(3):403-12. PubMed ID: 15608137 [TBL] [Abstract][Full Text] [Related]
14. Comparative aspects of the disposition and metabolism of xenobiotics in fish and mammals. Franklin RB; Elcombe CR; Vodicnik MJ; Lech JJ Fed Proc; 1980 Nov; 39(13):3144-9. PubMed ID: 7428959 [TBL] [Abstract][Full Text] [Related]
15. Use of aquatic organisms as models to determine the in vivo contribution of flavin-containing monooxygenases in xenobiotic biotransformation. Schlenk D Mol Mar Biol Biotechnol; 1995 Dec; 4(4):323-30. PubMed ID: 8541983 [TBL] [Abstract][Full Text] [Related]
16. Characterization of enzyme activities of Cytochrome P450 enzymes, Flavin-dependent monooxygenases, N-acetyltransferases and UDP-glucuronyltransferases in human reconstructed epidermis and full-thickness skin models. Jäckh C; Blatz V; Fabian E; Guth K; van Ravenzwaay B; Reisinger K; Landsiedel R Toxicol In Vitro; 2011 Sep; 25(6):1209-14. PubMed ID: 21435388 [TBL] [Abstract][Full Text] [Related]
17. An investigation of human and rat liver microsomal mycophenolic acid glucuronidation: evidence for a principal role of UGT1A enzymes and species differences in UGT1A specificity. Miles KK; Stern ST; Smith PC; Kessler FK; Ali S; Ritter JK Drug Metab Dispos; 2005 Oct; 33(10):1513-20. PubMed ID: 16033946 [TBL] [Abstract][Full Text] [Related]
18. Influence of N-terminal domain histidine and proline residues on the substrate selectivities of human UDP-glucuronosyltransferase 1A1, 1A6, 1A9, 2B7, and 2B10. Kerdpin O; Mackenzie PI; Bowalgaha K; Finel M; Miners JO Drug Metab Dispos; 2009 Sep; 37(9):1948-55. PubMed ID: 19487247 [TBL] [Abstract][Full Text] [Related]
19. Metabolism, disposition, and toxicity of drugs and other xenobiotics in aquatic species. Guarino AM; Lech JJ Vet Hum Toxicol; 1986; 28 Suppl 1():38-44. PubMed ID: 3334693 [TBL] [Abstract][Full Text] [Related]
20. A compilation of in vitro rate and affinity values for xenobiotic biotransformation in fish, measured under physiological conditions. Fitzsimmons PN; Lien GJ; Nichols JW Comp Biochem Physiol C Toxicol Pharmacol; 2007 May; 145(4):485-506. PubMed ID: 17360241 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]