These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 7525269)

  • 1. Structural organization of the pentameric transmembrane alpha-helices of phospholamban, a cardiac ion channel.
    Arkin IT; Adams PD; MacKenzie KR; Lemmon MA; Brünger AT; Engelman DM
    EMBO J; 1994 Oct; 13(20):4757-64. PubMed ID: 7525269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural model of the phospholamban ion channel complex in phospholipid membranes.
    Arkin IT; Rothman M; Ludlam CF; Aimoto S; Engelman DM; Rothschild KJ; Smith SO
    J Mol Biol; 1995 May; 248(4):824-34. PubMed ID: 7752243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational searching and mutagenesis suggest a structure for the pentameric transmembrane domain of phospholamban.
    Adams PD; Arkin IT; Engelman DM; Brünger AT
    Nat Struct Biol; 1995 Feb; 2(2):154-62. PubMed ID: 7749920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of the 1-36 amino-terminal fragment of human phospholamban by nuclear magnetic resonance and modeling of the phospholamban pentamer.
    Pollesello P; Annila A; Ovaska M
    Biophys J; 1999 Apr; 76(4):1784-95. PubMed ID: 10096878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using experimental information to produce a model of the transmembrane domain of the ion channel phospholamban.
    Herzyk P; Hubbard RE
    Biophys J; 1998 Mar; 74(3):1203-14. PubMed ID: 9512019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A leucine zipper stabilizes the pentameric membrane domain of phospholamban and forms a coiled-coil pore structure.
    Simmerman HK; Kobayashi YM; Autry JM; Jones LR
    J Biol Chem; 1996 Mar; 271(10):5941-6. PubMed ID: 8621468
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural perspectives of phospholamban, a helical transmembrane pentamer.
    Arkin IT; Adams PD; Brünger AT; Smith SO; Engelman DM
    Annu Rev Biophys Biomol Struct; 1997; 26():157-79. PubMed ID: 9241417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward a high-resolution structure of phospholamban: design of soluble transmembrane domain mutants.
    Frank S; Kammerer RA; Hellstern S; Pegoraro S; Stetefeld J; Lustig A; Moroder L; Engel J
    Biochemistry; 2000 Jun; 39(23):6825-31. PubMed ID: 10841762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Models for the transmembrane region of the phospholamban pentamer: which is correct?
    Adams PD; Lee AS; Brünger AT; Engelman DM
    Ann N Y Acad Sci; 1998 Sep; 853():178-85. PubMed ID: 10603945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sequence dependence of BNIP3 transmembrane domain dimerization implicates side-chain hydrogen bonding and a tandem GxxxG motif in specific helix-helix interactions.
    Sulistijo ES; MacKenzie KR
    J Mol Biol; 2006 Dec; 364(5):974-90. PubMed ID: 17049556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conversion of phospholamban into a soluble pentameric helical bundle.
    Li H; Cocco MJ; Steitz TA; Engelman DM
    Biochemistry; 2001 Jun; 40(22):6636-45. PubMed ID: 11380258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. X-ray structure of a water-soluble analog of the membrane protein phospholamban: sequence determinants defining the topology of tetrameric and pentameric coiled coils.
    Slovic AM; Stayrook SE; North B; Degrado WF
    J Mol Biol; 2005 May; 348(3):777-87. PubMed ID: 15826670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the transmembrane cysteine residues in phospholamban.
    Arkin IT; Adams PD; Brünger AT; Aimoto S; Engelman DM; Smith SO
    J Membr Biol; 1997 Feb; 155(3):199-206. PubMed ID: 9050443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid-protein interactions with cardiac phospholamban studied by spin-label electron spin resonance.
    Arora A; Williamson IM; Lee AG; Marsh D
    Biochemistry; 2003 May; 42(17):5151-8. PubMed ID: 12718559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices.
    Lemmon MA; Flanagan JM; Hunt JF; Adair BD; Bormann BJ; Dempsey CE; Engelman DM
    J Biol Chem; 1992 Apr; 267(11):7683-9. PubMed ID: 1560003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cysteine reactivity and oligomeric structures of phospholamban and its mutants.
    Karim CB; Stamm JD; Karim J; Jones LR; Thomas DD
    Biochemistry; 1998 Sep; 37(35):12074-81. PubMed ID: 9724519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reexamination of the role of the leucine/isoleucine zipper residues of phospholamban in inhibition of the Ca2+ pump of cardiac sarcoplasmic reticulum.
    Cornea RL; Autry JM; Chen Z; Jones LR
    J Biol Chem; 2000 Dec; 275(52):41487-94. PubMed ID: 11016944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bundles of amphipathic transmembrane alpha-helices as a structural motif for ion-conducting channel proteins: studies on sodium channels and acetylcholine receptors.
    Oiki S; Madison V; Montal M
    Proteins; 1990; 8(3):226-36. PubMed ID: 2177892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic null-cysteine phospholamban analogue and the corresponding transmembrane domain inhibit the Ca-ATPase.
    Karim CB; Marquardt CG; Stamm JD; Barany G; Thomas DD
    Biochemistry; 2000 Sep; 39(35):10892-7. PubMed ID: 10978176
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystal structure of a five-stranded coiled coil in COMP: a prototype ion channel?
    Malashkevich VN; Kammerer RA; Efimov VP; Schulthess T; Engel J
    Science; 1996 Nov; 274(5288):761-5. PubMed ID: 8864111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.