These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 7525269)

  • 41. Channels formed by the transmembrane helix of phospholamban: a simulation study.
    Sansom MS; Smith GR; Smart OS; Smith SO
    Biophys Chem; 1997 Dec; 69(2-3):269-81. PubMed ID: 9474759
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Val(659)-->Glu mutation within the transmembrane domain of ErbB-2: effects measured by (2)H NMR in fluid phospholipid bilayers.
    Sharpe S; Barber KR; Grant CW
    Biochemistry; 2000 May; 39(21):6572-80. PubMed ID: 10828974
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chemical synthesis and characterization of peptides and oligomeric proteins designed to form transmembrane ion channels.
    Iwamoto T; Grove A; Montal MO; Montal M; Tomich JM
    Int J Pept Protein Res; 1994 Jun; 43(6):597-607. PubMed ID: 7523324
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fourier transform infrared spectroscopy and site-directed isotope labeling as a probe of local secondary structure in the transmembrane domain of phospholamban.
    Ludlam CF; Arkin IT; Liu XM; Rothman MS; Rath P; Aimoto S; Smith SO; Engelman DM; Rothschild KJ
    Biophys J; 1996 Apr; 70(4):1728-36. PubMed ID: 8785331
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A fluorescence energy transfer method for analyzing protein oligomeric structure: application to phospholamban.
    Li M; Reddy LG; Bennett R; Silva ND; Jones LR; Thomas DD
    Biophys J; 1999 May; 76(5):2587-99. PubMed ID: 10233073
    [TBL] [Abstract][Full Text] [Related]  

  • 46. From membrane to molecule to the third amino acid from the left with a membrane transport protein.
    Kaback HR; Wu J
    Q Rev Biophys; 1997 Nov; 30(4):333-64. PubMed ID: 9634651
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular compatibility of the channel gate and the N terminus of S5 segment for voltage-gated channel activity.
    Caprini M; Fava M; Valente P; Fernandez-Ballester G; Rapisarda C; Ferroni S; Ferrer-Montiel A
    J Biol Chem; 2005 May; 280(18):18253-64. PubMed ID: 15749711
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Long α helices projecting from the membrane as the dimer interface in the voltage-gated H(+) channel.
    Fujiwara Y; Kurokawa T; Okamura Y
    J Gen Physiol; 2014 Mar; 143(3):377-86. PubMed ID: 24567511
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Design and characterization of an intramolecular antiparallel coiled coil peptide.
    Myszka DG; Chaiken IM
    Biochemistry; 1994 Mar; 33(9):2363-72. PubMed ID: 8117695
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of channel-lining amino acid residues in the hydrophobic segment of colicin Ia.
    Kienker PK; Jakes KS; Finkelstein A
    J Gen Physiol; 2008 Dec; 132(6):693-707. PubMed ID: 19029376
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Sequence analysis of phospholamban. Identification of phosphorylation sites and two major structural domains.
    Simmerman HK; Collins JH; Theibert JL; Wegener AD; Jones LR
    J Biol Chem; 1986 Oct; 261(28):13333-41. PubMed ID: 3759968
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modeling transmembrane helical oligomers.
    Dieckmann GR; DeGrado WF
    Curr Opin Struct Biol; 1997 Aug; 7(4):486-94. PubMed ID: 9266169
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Structural flexibility of the pentameric SARS coronavirus envelope protein ion channel.
    Parthasarathy K; Ng L; Lin X; Liu DX; Pervushin K; Gong X; Torres J
    Biophys J; 2008 Sep; 95(6):L39-41. PubMed ID: 18658207
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Amino acid residues lining the chloride channel of the cystic fibrosis transmembrane conductance regulator.
    Akabas MH; Kaufmann C; Cook TA; Archdeacon P
    J Biol Chem; 1994 May; 269(21):14865-8. PubMed ID: 7515047
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structure of cardiac gap junction intercellular channels.
    Yeager M
    J Struct Biol; 1998; 121(2):231-45. PubMed ID: 9615440
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The structure of the M2 channel-lining segment from the nicotinic acetylcholine receptor.
    Montal M; Opella SJ
    Biochim Biophys Acta; 2002 Oct; 1565(2):287-93. PubMed ID: 12409201
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Probing the oligomeric state of phospholamban variants in phospholipid bilayers from solid-state NMR measurements of rotational diffusion rates.
    Hughes E; Clayton JC; Middleton DA
    Biochemistry; 2005 Mar; 44(10):4055-66. PubMed ID: 15751982
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modelling packing interactions in parallel helix bundles: pentameric bundles of nicotinic receptor M2 helices.
    Sankararamakrishnan R; Sansom MS
    Biochim Biophys Acta; 1995 Nov; 1239(2):122-32. PubMed ID: 7488617
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthetic peptides and four-helix bundle proteins as model systems for the pore-forming structure of channel proteins. II. Transmembrane segment M2 of the brain glycine receptor is a plausible candidate for the pore-lining structure.
    Reddy GL; Iwamoto T; Tomich JM; Montal M
    J Biol Chem; 1993 Jul; 268(20):14608-15. PubMed ID: 7686901
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A mutational study of transmembrane helix-helix interactions.
    Prodöhl A; Weber M; Dreher C; Schneider D
    Biochimie; 2007 Nov; 89(11):1433-7. PubMed ID: 17688996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.