These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 7525390)

  • 1. Sequential expression of acetylcholine receptor isoforms in mesodermalized Xenopus animal caps.
    Reuer Q; Kullberg RW; Owens JL
    Dev Biol; 1994 Nov; 166(1):323-30. PubMed ID: 7525390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of nicotinic acetylcholine receptors in aneural Xenopus embryos.
    Owens JL; Kullberg R
    Dev Biol; 1989 Sep; 135(1):12-9. PubMed ID: 2475375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular distinction between fetal and adult forms of muscle acetylcholine receptor.
    Mishina M; Takai T; Imoto K; Noda M; Takahashi T; Numa S; Methfessel C; Sakmann B
    Nature; 1986 May 22-28; 321(6068):406-11. PubMed ID: 2423878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The nicotinic acetylcholine receptor channel in embryonic muscle of Xenopus laevis. A program to separate channel types.
    Rojas L; Senquiz J; Zuazaga C
    Acta Cient Venez; 1991; 42(2):64-9. PubMed ID: 1843560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cysteine-rich form of Xenopus neuregulin induces the expression of acetylcholine receptors in cultured myotubes.
    Yang JF; Zhou H; Choi RC; Ip NY; Peng HB; Tsim KW
    Mol Cell Neurosci; 1999 Jun; 13(6):415-29. PubMed ID: 10383827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adult forms of nicotinic acetylcholine receptors are expressed in the absence of nerve during differentiation of a mouse skeletal muscle cell line.
    Shepherd D; Brehm P
    Dev Biol; 1994 Apr; 162(2):549-57. PubMed ID: 8150213
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Xenopus platelet-derived growth factor alpha receptor: cDNA cloning and demonstration that mesoderm induction establishes the lineage-specific pattern of ligand and receptor gene expression.
    Jones SD; Ho L; Smith JC; Yordan C; Stiles CD; Mercola M
    Dev Genet; 1993; 14(3):185-93. PubMed ID: 8358864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of agrin isoforms in Xenopus embryos alters the distribution of synaptic acetylcholine receptors during development of the neuromuscular junction.
    Godfrey EW; Roe J; Heathcote RD
    Dev Biol; 1999 Jan; 205(1):22-32. PubMed ID: 9882495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo development of nicotinic acetylcholine receptor channels in Xenopus myotomal muscle.
    Owens JL; Kullberg R
    J Neurosci; 1989 Mar; 9(3):1018-28. PubMed ID: 2538578
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of the gamma subunit and expression system on acetylcholine receptor gating.
    Lo DC; Pinkham JL; Stevens CF
    Neuron; 1990 Dec; 5(6):857-66. PubMed ID: 1702647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Roles of transforming growth factor-alpha and epidermal growth factor in chick limb development.
    Dealy CN; Scranton V; Cheng HC
    Dev Biol; 1998 Oct; 202(1):43-55. PubMed ID: 9758702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A type 1 serine/threonine kinase receptor that can dorsalize mesoderm in Xenopus.
    Mahony D; Gurdon JB
    Proc Natl Acad Sci U S A; 1995 Jul; 92(14):6474-8. PubMed ID: 7604016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The MLC1f/3f gene is an early marker of somitic muscle differentiation in Xenopus laevis embryo.
    Thézé N; Hardy S; Wilson R; Allo MR; Mohun T; Thiebaud P
    Dev Biol; 1995 Oct; 171(2):352-62. PubMed ID: 7556919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Smooth muscle lineage diversity in the chick embryo. Two types of aortic smooth muscle cell differ in growth and receptor-mediated transcriptional responses to transforming growth factor-beta.
    Topouzis S; Majesky MW
    Dev Biol; 1996 Sep; 178(2):430-45. PubMed ID: 8830742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous opening of the acetylcholine receptor channel in developing muscle cells from normal and dystrophic mice.
    Franco-Obregón A; Lansman JB
    J Neurosci Res; 1995 Nov; 42(4):452-8. PubMed ID: 8568931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of acetylcholine receptor transcript expression during development in Xenopus laevis.
    Baldwin TJ; Yoshihara CM; Blackmer K; Kintner CR; Burden SJ
    J Cell Biol; 1988 Feb; 106(2):469-78. PubMed ID: 3339098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activin and its receptors during gastrulation and the later phases of mesoderm development in the chick embryo.
    Stern CD; Yu RT; Kakizuka A; Kintner CR; Mathews LS; Vale WW; Evans RM; Umesono K
    Dev Biol; 1995 Nov; 172(1):192-205. PubMed ID: 7589799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homomeric beta 1 gamma-aminobutyric acid A receptor-ion channels: evaluation of pharmacological and physiological properties.
    Krishek BJ; Moss SJ; Smart TG
    Mol Pharmacol; 1996 Mar; 49(3):494-504. PubMed ID: 8643089
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptional and translational requirements for developmental alterations in acetylcholine receptor channel function in Xenopus myotomal muscle.
    Brehm P; Kream RM; Moody-Corbett F
    Dev Biol; 1987 Sep; 123(1):222-30. PubMed ID: 2442051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antagonism of nicotinic acetylcholine receptors by inhibitors of monoamine uptake.
    López-Valdés HE; García-Colunga J
    Mol Psychiatry; 2001 Sep; 6(5):511-9. PubMed ID: 11526465
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.