These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 7525410)

  • 1. Single-strand-targeted triplex formation: stability, specificity and RNase H activation properties.
    Kandimalla ER; Agrawal S
    Gene; 1994 Nov; 149(1):115-21. PubMed ID: 7525410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single stand targeted triplex formation: physicochemical and biochemical properties of foldback triplexes.
    Kandimalla ER; Manning A; Agrawal S
    J Biomol Struct Dyn; 1996 Aug; 14(1):79-90. PubMed ID: 8877564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single strand targeted triplex-formation. Destabilization of guanine quadruplex structures by foldback triplex-forming oligonucleotides.
    Kandimalla ER; Agrawal S
    Nucleic Acids Res; 1995 Mar; 23(6):1068-74. PubMed ID: 7537368
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single strand targeted triplex formation: strand displacement of duplex DNA by foldback triplex-forming oligonucleotides.
    Kandimalla ER; Manning AN; Agrawal S
    J Biomol Struct Dyn; 1995 Dec; 13(3):483-91. PubMed ID: 8825728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognition and cleavage of single-stranded DNA containing hairpin structures by oligonucleotides forming both Watson-Crick and Hoogsteen hydrogen bonds.
    François JC; Hélène C
    Biochemistry; 1995 Jan; 34(1):65-72. PubMed ID: 7819224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for a DNA triplex in a recombination-like motif: I. Recognition of Watson-Crick base pairs by natural bases in a high-stability triplex.
    Walter A; Schütz H; Simon H; Birch-Hirschfeld E
    J Mol Recognit; 2001; 14(2):122-39. PubMed ID: 11301482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-stranded DNA and RNA targeted triplex-formation: UV, CD and molecular modeling studies of foldback triplexes containing different RNA, 2'-OMe-RNA and DNA strand combinations.
    Kandimalla ER; Venkataraman G; Sasisekharan V; Agrawal S
    J Biomol Struct Dyn; 1997 Jun; 14(6):715-26. PubMed ID: 9195340
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetics of strand-displacement reactions in triple helices: a spectroscopic study.
    Mills M; Arimondo PB; Lacroix L; Garestier T; Hélène C; Klump H; Mergny JL
    J Mol Biol; 1999 Sep; 291(5):1035-54. PubMed ID: 10518941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of a triplex DNA-binding protein from human cells.
    Guieysse AL; Praseuth D; Hélène C
    J Mol Biol; 1997 Mar; 267(2):289-98. PubMed ID: 9096226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single strand targeted triplex formation: targeting purine-pyrimidine mixed sequences using abasic linkers.
    Kandimalla ER; Manning AN; Venkataraman G; Sasisekharan V; Agrawal S
    Nucleic Acids Res; 1995 Nov; 23(21):4510-7. PubMed ID: 7501477
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trapping DNA polymerases using triplex-forming oligodeoxyribonucleotides.
    Samadashwily GM; Mirkin SM
    Gene; 1994 Nov; 149(1):127-36. PubMed ID: 7958976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study.
    Plum GE; Park YW; Singleton SF; Dervan PB; Breslauer KJ
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9436-40. PubMed ID: 2251285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong binding of single-stranded DNA by stem-loop oligonucleotides.
    D'Souza DJ; Kool ET
    J Biomol Struct Dyn; 1992 Aug; 10(1):141-52. PubMed ID: 1418737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental study of mechanism and specificity of peptide nucleic acid (PNA) binding to duplex DNA.
    Kuhn H; Demidov VV; Nielsen PE; Frank-Kamenetskii MD
    J Mol Biol; 1999 Mar; 286(5):1337-45. PubMed ID: 10064701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triple-helix formation by an oligonucleotide containing one (dA)12 and two (dT)12 sequences bridged by two hexaethylene glycol chains.
    Durand M; Peloille S; Thuong NT; Maurizot JC
    Biochemistry; 1992 Sep; 31(38):9197-204. PubMed ID: 1390706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting pyrimidine single strands by triplex formation: structural optimization of binding.
    Vo T; Wang S; Kool ET
    Nucleic Acids Res; 1995 Aug; 23(15):2937-44. PubMed ID: 7544889
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of 5-methylcytosine on the structure and stability of DNA. Formation of triple-stranded concatenamers by overlapping oligonucleotides.
    Xodo LE; Alunni-Fabbroni M; Manzini G
    J Biomol Struct Dyn; 1994 Feb; 11(4):703-20. PubMed ID: 8204209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of HIV-1 replication by foldback triple-helix forming oligonucleotides.
    Hiratou T; Tsukahara S; Takai K; Koyanagi Y; Yamamoto N; Takaku H
    Nucleic Acids Symp Ser; 1997; (37):221-2. PubMed ID: 9586079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. pH and cation effects on the properties of parallel pyrimidine motif DNA triplexes.
    Sugimoto N; Wu P; Hara H; Kawamoto Y
    Biochemistry; 2001 Aug; 40(31):9396-405. PubMed ID: 11478909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Triplex formation by a psoralen-conjugated oligodeoxyribonucleotide containing the base analog 8-oxo-adenine.
    Miller PS; Bi G; Kipp SA; Fok V; DeLong RK
    Nucleic Acids Res; 1996 Feb; 24(4):730-6. PubMed ID: 8604317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.