These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 7526390)

  • 1. Pseudoknot in the central domain of small subunit ribosomal RNA is essential for translation.
    Vila A; Viril-Farley J; Tapprich WE
    Proc Natl Acad Sci U S A; 1994 Nov; 91(23):11148-52. PubMed ID: 7526390
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Base complementarity in helix 2 of the central pseudoknot in 16S rRNA is essential for ribosome functioning.
    Poot RA; van den Worm SH; Pleij CW; van Duin J
    Nucleic Acids Res; 1998 Jan; 26(2):549-53. PubMed ID: 9421514
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of the central pseudoknot in 16S rRNA is essential for initiation of translation.
    Brink MF; Verbeet MP; de Boer HA
    EMBO J; 1993 Oct; 12(10):3987-96. PubMed ID: 7691600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction and analysis of base-paired regions of the 16S rRNA in the 30S ribosomal subunit determined by constraint satisfaction molecular modelling.
    Dolan MA; Babin P; Wollenzien P
    J Mol Graph Model; 2001; 19(6):495-513. PubMed ID: 11552678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arrangement of the central pseudoknot region of 16S rRNA in the 30S ribosomal subunit determined by site-directed 4-thiouridine crosslinking.
    Juzumiene DI; Wollenzien P
    RNA; 2001 Jan; 7(1):71-84. PubMed ID: 11214183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of base change mutations within an Escherichia coli ribosomal RNA leader region on rRNA maturation and ribosome formation.
    Schäferkordt J; Wagner R
    Nucleic Acids Res; 2001 Aug; 29(16):3394-403. PubMed ID: 11504877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential assembly of 16S rRNA domains during 30S subunit formation.
    Xu Z; Culver GM
    RNA; 2010 Oct; 16(10):1990-2001. PubMed ID: 20736336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The central pseudoknot in 16S ribosomal RNA is needed for ribosome stability but is not essential for 30S initiation complex formation.
    Poot RA; Pleij CW; van Duin J
    Nucleic Acids Res; 1996 Oct; 24(19):3670-6. PubMed ID: 8871543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational analysis of Escherichia coli 30S ribosomes containing the single-base mutations G530U, U1498G, G1401C, and C1501G and the double-base mutation G1401C/C1501G.
    Moine H; Nurse K; Ehresmann B; Ehresmann C; Ofengand J
    Biochemistry; 1997 Nov; 36(44):13700-9. PubMed ID: 9354641
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A functional pseudoknot in 16S ribosomal RNA.
    Powers T; Noller HF
    EMBO J; 1991 Aug; 10(8):2203-14. PubMed ID: 1712293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Context dependent RNA-RNA recognition in a three-dimensional model of the 16S rRNA core.
    Masquida B; Felden B; Westhof E
    Bioorg Med Chem; 1997 Jun; 5(6):1021-35. PubMed ID: 9222495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The importance of base pairing in the penultimate stem of Escherichia coli 16S rRNA for ribosomal subunit association.
    Firpo MA; Dahlberg AE
    Nucleic Acids Res; 1998 May; 26(9):2156-60. PubMed ID: 9547274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Requirement for a conserved, tertiary interaction in the core of 23S ribosomal RNA.
    Aagaard C; Douthwaite S
    Proc Natl Acad Sci U S A; 1994 Apr; 91(8):2989-93. PubMed ID: 8159692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nonbridging phosphate oxygens in 16S rRNA important for 30S subunit assembly and association with the 50S ribosomal subunit.
    Ghosh S; Joseph S
    RNA; 2005 May; 11(5):657-67. PubMed ID: 15811917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and function of the conserved 690 hairpin in Escherichia coli 16 S ribosomal RNA: analysis of the stem nucleotides.
    Morosyuk SV; Lee K; SantaLucia J; Cunningham PR
    J Mol Biol; 2000 Jun; 300(1):113-26. PubMed ID: 10864503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic and comparative analyses reveal an alternative secondary structure in the region of nt 912 of Escherichia coli 16S rRNA.
    Lodmell JS; Gutell RR; Dahlberg AE
    Proc Natl Acad Sci U S A; 1995 Nov; 92(23):10555-9. PubMed ID: 7479839
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A metastable rRNA junction essential for bacterial 30S biogenesis.
    Sharma IM; Rappé MC; Addepalli B; Grabow WW; Zhuang Z; Abeysirigunawardena SC; Limbach PA; Jaeger L; Woodson SA
    Nucleic Acids Res; 2018 Jun; 46(10):5182-5194. PubMed ID: 29850893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neighborhood of 16S rRNA nucleotides U788/U789 in the 30S ribosomal subunit determined by site-directed crosslinking.
    Mundus D; Wollenzien P
    RNA; 1998 Nov; 4(11):1373-85. PubMed ID: 9814758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of transient RNA-RNA interactions important for the facilitated structure formation of bacterial ribosomal 16S RNA.
    Besançon W; Wagner R
    Nucleic Acids Res; 1999 Nov; 27(22):4353-62. PubMed ID: 10536142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three dimensional model for the 16S ribosomal RNA that incorporates information for the mRNA track.
    Wollenzien P; Juzumiene D; Shapkina T; Minchew P
    Nucleic Acids Symp Ser; 1995; (33):76-8. PubMed ID: 8643405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.