These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 7526743)
1. Apical cell escape from the neuroepithelium and cell transformation during terminal lip fusion in the house shrew embryo. Yasui K; Ninomiya Y; Osumi-Yamashita N; Shibanai S; Eto K Anat Embryol (Berl); 1994 Jun; 189(6):463-73. PubMed ID: 7526743 [TBL] [Abstract][Full Text] [Related]
2. Embryonic development of the house shrew (Suncus murinus). II. Embryos at stages 11 and 12 with 13 to 29 pairs of somites, showing limb bud formation and closed cephalic neural tube. Yasui K Anat Embryol (Berl); 1993 Jan; 187(1):45-65. PubMed ID: 8430900 [TBL] [Abstract][Full Text] [Related]
3. The neural crest epithelial-mesenchymal transition in 4D: a 'tail' of multiple non-obligatory cellular mechanisms. Ahlstrom JD; Erickson CA Development; 2009 Jun; 136(11):1801-12. PubMed ID: 19429784 [TBL] [Abstract][Full Text] [Related]
4. Developmental anomalies induced by all-trans-retinoic acid in fetal mice: II. Induction of abnormal neuroepithelium. Yasuda Y; Konishi H; Kihara T; Tanimura T Teratology; 1987 Jun; 35(3):355-66. PubMed ID: 3629516 [TBL] [Abstract][Full Text] [Related]
5. Early migrating neural crest cells can form ventral neural tube derivatives when challenged by transplantation. Ruffins S; Artinger KB; Bronner-Fraser M Dev Biol; 1998 Nov; 203(2):295-304. PubMed ID: 9808781 [TBL] [Abstract][Full Text] [Related]
6. Separation of neural and surface ectoderm after closure of the rostral neuropore. Hoving EW; Vermeij-Keers C; Mommaas-Kienhuis AM; Hartwig NG Anat Embryol (Berl); 1990; 182(5):455-63. PubMed ID: 2291490 [TBL] [Abstract][Full Text] [Related]
7. Prosencephalic neural folds give rise to neural crest cells in the Australian lungfish, Neoceratodus forsteri. Kundrát M; Joss JM; Olsson L J Exp Zool B Mol Dev Evol; 2009 Mar; 312(2):83-94. PubMed ID: 19006202 [TBL] [Abstract][Full Text] [Related]
8. Ultrastructural changes in cells associated with interkinetic nuclear migration in the developing chick neuroepithelium. Nagele RG; Lee HY J Exp Zool; 1979 Oct; 210(1):89-106. PubMed ID: 536715 [TBL] [Abstract][Full Text] [Related]
9. Studies on the mechanisms of neurulation in the chick: interrelationship of contractile proteins, microfilaments, and the shape of neuroepithelial cells. Lee HY; Nagele RG J Exp Zool; 1985 Aug; 235(2):205-15. PubMed ID: 3903030 [TBL] [Abstract][Full Text] [Related]
10. The effects of mesencephalic neural crest cell extirpation on the development of chicken embryos. McKee GJ; Ferguson MW J Anat; 1984 Oct; 139 ( Pt 3)(Pt 3):491-512. PubMed ID: 6490532 [TBL] [Abstract][Full Text] [Related]
11. Neural crest contribution to forebrain development. Creuzet SE Semin Cell Dev Biol; 2009 Aug; 20(6):751-9. PubMed ID: 19500684 [TBL] [Abstract][Full Text] [Related]
12. Neural crest formation in the head of the mouse embryo as observed using a new histological technique. Nichols DH J Embryol Exp Morphol; 1981 Aug; 64():105-20. PubMed ID: 7031165 [TBL] [Abstract][Full Text] [Related]
13. Ventrally emigrating neural tube (VENT) cells: a second neural tube-derived cell population. Dickinson DP; Machnicki M; Ali MM; Zhang Z; Sohal GS J Anat; 2004 Aug; 205(2):79-98. PubMed ID: 15291792 [TBL] [Abstract][Full Text] [Related]
14. Cell migration into neural tube lumen provides evidence for the "fixed cortex" theory of cell motility. Bilozur ME; Hay ED Cell Motil Cytoskeleton; 1989; 14(4):469-84. PubMed ID: 2624941 [TBL] [Abstract][Full Text] [Related]
15. The contribution of both forebrain and midbrain crest cells to the mesenchyme in the frontonasal mass of mouse embryos. Osumi-Yamashita N; Ninomiya Y; Doi H; Eto K Dev Biol; 1994 Aug; 164(2):409-19. PubMed ID: 8045344 [TBL] [Abstract][Full Text] [Related]
16. Hyperpigmentation in the Silkie fowl correlates with abnormal migration of fate-restricted melanoblasts and loss of environmental barrier molecules. Faraco CD; Vaz SA; Pástor MV; Erickson CA Dev Dyn; 2001 Mar; 220(3):212-25. PubMed ID: 11241830 [TBL] [Abstract][Full Text] [Related]
17. Noggin and basic FGF were implicated in forebrain fate and caudal fate, respectively, of the neural tube-like structures emerging in mouse ES cell culture. Chiba S; Kurokawa MS; Yoshikawa H; Ikeda R; Takeno M; Tadokoro M; Sekino H; Hashimoto T; Suzuki N Exp Brain Res; 2005 May; 163(1):86-99. PubMed ID: 15703886 [TBL] [Abstract][Full Text] [Related]
18. The ultrastructure of early cephalic neural crest cell migration in the mouse. Innes PB Anat Embryol (Berl); 1985; 172(1):33-8. PubMed ID: 4037370 [TBL] [Abstract][Full Text] [Related]
19. Neural fold fusion in the cranial region of the chick embryo. Lawson A; England MA Dev Dyn; 1998 Aug; 212(4):473-81. PubMed ID: 9707321 [TBL] [Abstract][Full Text] [Related]
20. Neural crest development in the Xenopus laevis embryo, studied by interspecific transplantation and scanning electron microscopy. Sadaghiani B; Thiébaud CH Dev Biol; 1987 Nov; 124(1):91-110. PubMed ID: 3666314 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]