These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 7526780)

  • 1. Function and structure relationships in DNA polymerases.
    Joyce CM; Steitz TA
    Annu Rev Biochem; 1994; 63():777-822. PubMed ID: 7526780
    [No Abstract]   [Full Text] [Related]  

  • 2. Chimeric thermostable DNA polymerases with reverse transcriptase and attenuated 3'-5' exonuclease activity.
    Schönbrunner NJ; Fiss EH; Budker O; Stoffel S; Sigua CL; Gelfand DH; Myers TW
    Biochemistry; 2006 Oct; 45(42):12786-95. PubMed ID: 17042497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two DNA polymerases: HIV reverse transcriptase and the Klenow fragment of Escherichia coli DNA polymerase I.
    Steitz TA; Smerdon S; Jäger J; Wang J; Kohlstaedt LA; Friedman JM; Beese LS; Rice PA
    Cold Spring Harb Symp Quant Biol; 1993; 58():495-504. PubMed ID: 7525146
    [No Abstract]   [Full Text] [Related]  

  • 4. Rationale for mutagenesis of DNA polymerase active sites: DNA polymerase alpha.
    Copeland WC; Dong Q; Wang TS
    Methods Enzymol; 1995; 262():294-303. PubMed ID: 8594355
    [No Abstract]   [Full Text] [Related]  

  • 5. Kinetics of processive nucleic acid polymerases and nucleases.
    Chou KC; Kézdy FJ; Reusser F
    Anal Biochem; 1994 Sep; 221(2):217-30. PubMed ID: 7529005
    [No Abstract]   [Full Text] [Related]  

  • 6. Similarities and differences in the RNase H activities of human immunodeficiency virus type 1 reverse transcriptase and Moloney murine leukemia virus reverse transcriptase.
    Gao HQ; Sarafianos SG; Arnold E; Hughes SH
    J Mol Biol; 1999 Dec; 294(5):1097-113. PubMed ID: 10600369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutational analysis of the fingers and palm subdomains of human immunodeficiency virus type-1 (HIV-1) reverse transcriptase.
    Boyer PL; Ferris AL; Clark P; Whitmer J; Frank P; Tantillo C; Arnold E; Hughes SH
    J Mol Biol; 1994 Oct; 243(3):472-83. PubMed ID: 7525967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7.
    Rodriguez AC; Park HW; Mao C; Beese LS
    J Mol Biol; 2000 Jun; 299(2):447-62. PubMed ID: 10860752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A full-coordinate model of the polymerase domain of HIV-1 reverse transcriptase and its interaction with a nucleic acid substrate.
    Setlik RF; Meyer DJ; Shibata M; Roskwitalski R; Ornstein RL; Rein R
    J Biomol Struct Dyn; 1994 Aug; 12(1):037-60. PubMed ID: 7531452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of an active form of recombinant Ty1 reverse transcriptase in Escherichia coli: a fusion protein containing the C-terminal region of the Ty1 integrase linked to the reverse transcriptase-RNase H domain exhibits polymerase and RNase H activities.
    Wilhelm M; Boutabout M; Wilhelm FX
    Biochem J; 2000 Jun; 348 Pt 2(Pt 2):337-42. PubMed ID: 10816427
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and mechanistic relationships between nucleic acid polymerases.
    Sousa R
    Trends Biochem Sci; 1996 May; 21(5):186-90. PubMed ID: 8871404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substitution of Asp114 or Arg116 in the fingers domain of moloney murine leukemia virus reverse transcriptase affects interactions with the template-primer resulting in decreased processivity.
    Gu J; Villanueva RA; Snyder CS; Roth MJ; Georgiadis MM
    J Mol Biol; 2001 Jan; 305(2):341-59. PubMed ID: 11124910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures of an N-terminal fragment from Moloney murine leukemia virus reverse transcriptase complexed with nucleic acid: functional implications for template-primer binding to the fingers domain.
    Najmudin S; Coté ML; Sun D; Yohannan S; Montano SP; Gu J; Georgiadis MM
    J Mol Biol; 2000 Feb; 296(2):613-32. PubMed ID: 10669612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [DNA replication machinery active at around 100 degrees C].
    Matsui I; Urushibata Y; Matsui E
    Tanpakushitsu Kakusan Koso; 2006 Aug; 51(9):1072-80. PubMed ID: 16895237
    [No Abstract]   [Full Text] [Related]  

  • 15. [Nucleotide-dependent degradation of nucleic acids by DNA and RNA polymerases].
    Sosunov VV; Viktorova LS
    Mol Biol (Mosk); 2004; 38(5):804-22. PubMed ID: 15554184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What is the orientation of DNA polymerases on their templates?
    Hughes SH; Hostomsky Z; Le Grice SF; Lentz K; Arnold E
    J Virol; 1996 May; 70(5):2679-83. PubMed ID: 8627740
    [No Abstract]   [Full Text] [Related]  

  • 17. Structure of HIV-1 reverse transcriptase/DNA complex at 7 A resolution showing active site locations.
    Arnold E; Jacobo-Molina A; Nanni RG; Williams RL; Lu X; Ding J; Clark AD; Zhang A; Ferris AL; Clark P
    Nature; 1992 May; 357(6373):85-9. PubMed ID: 1374166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional roles of carboxylate residues comprising the DNA polymerase active site triad of Ty3 reverse transcriptase.
    Bibillo A; Lener D; Klarmann GJ; Le Grice SF
    Nucleic Acids Res; 2005; 33(1):171-81. PubMed ID: 15647500
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombinant reverse transcriptase of Rous sarcoma virus: characterization of DNA polymerase and RNAase H activities.
    Chernov AP; Mel'nikov AA; Fodor II
    Biomed Sci; 1991; 2(1):49-53. PubMed ID: 1717011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A unified polymerase mechanism for nonhomologous DNA and RNA polymerases.
    Steitz TA; Smerdon SJ; Jäger J; Joyce CM
    Science; 1994 Dec; 266(5193):2022-5. PubMed ID: 7528445
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 14.