These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 7526878)

  • 1. Examination of compact bone microdamage using back-scattered electron microscopy.
    Schaffler MB; Pitchford WC; Choi K; Riddle JM
    Bone; 1994; 15(5):483-8. PubMed ID: 7526878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence-aided detection of microdamage in compact bone.
    Lee TC; Myers ER; Hayes WC
    J Anat; 1998 Aug; 193 ( Pt 2)(Pt 2):179-84. PubMed ID: 9827633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional confocal images of microdamage in cancellous bone.
    Fazzalari NL; Forwood MR; Manthey BA; Smith K; Kolesik P
    Bone; 1998 Oct; 23(4):373-8. PubMed ID: 9763150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualisation of three-dimensional microcracks in compact bone.
    O'Brien FJ; Taylor D; Dickson GR; Lee TC
    J Anat; 2000 Oct; 197 Pt 3(Pt 3):413-20. PubMed ID: 11117627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. En bloc staining of bone under load does not improve dye diffusion into microcracks.
    Burr DB; Turner CH; Naick P; Forwood MR; Pidaparti R
    J Biomech; 1998 Mar; 31(3):285-8. PubMed ID: 9645544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional morphology of microdamage in peri-screw bone: a scanning electron microscopy of methylmethacrylate cast replica.
    Wang L; Shao J; Ye T; Deng L; Qiu S
    Microsc Microanal; 2012 Oct; 18(5):1106-11. PubMed ID: 23046724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The morphological association between microcracks and osteocyte lacunae in human cortical bone.
    Qiu S; Rao DS; Fyhrie DP; Palnitkar S; Parfitt AM
    Bone; 2005 Jul; 37(1):10-5. PubMed ID: 15878702
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detecting microdamage in bone.
    Lee TC; Mohsin S; Taylor D; Parkesh R; Gunnlaugsson T; O'Brien FJ; Giehl M; Gowin W
    J Anat; 2003 Aug; 203(2):161-72. PubMed ID: 12924817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of subchondral bone microdamage quantification using contrast-enhanced imaging techniques.
    Ayodele BA; Malekipour F; Pagel CN; Mackie EJ; Whitton RC
    J Anat; 2024 Jul; 245(1):58-69. PubMed ID: 38481117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Back-scattered electron imaging of sections through the cochlea: a new technique for studying cochlear morphology.
    Thorne PR; Vujcich TE; Gavin JB
    Stain Technol; 1987 May; 62(3):191-9. PubMed ID: 2441496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale examination of microdamage in sheep cortical bone using synchrotron radiation transmission x-ray microscopy.
    Brock GR; Kim G; Ingraffea AR; Andrews JC; Pianetta P; van der Meulen MC
    PLoS One; 2013; 8(3):e57942. PubMed ID: 23472121
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New insights into the propagation of fatigue damage in cortical bone using confocal microscopy and chelating fluorochromes.
    Zarrinkalam KH; Kuliwaba JS; Martin RB; Wallwork MA; Fazzalari NL
    Eur J Morphol; 2005; 42(1-2):81-90. PubMed ID: 16123027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The behaviour of microcracks in compact bone.
    O'brien FJ; Hardiman DA; Hazenberg JG; Mercy MV; Mohsin S; Taylor D; Lee TC
    Eur J Morphol; 2005; 42(1-2):71-9. PubMed ID: 16123026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contrast-enhanced micro-computed tomography of fatigue microdamage accumulation in human cortical bone.
    Landrigan MD; Li J; Turnbull TL; Burr DB; Niebur GL; Roeder RK
    Bone; 2011 Mar; 48(3):443-50. PubMed ID: 20951850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental validation of a microcracking-based toughening mechanism for cortical bone.
    Vashishth D; Tanner KE; Bonfield W
    J Biomech; 2003 Jan; 36(1):121-4. PubMed ID: 12485646
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of fracture mechanics to failure in manatee rib bone.
    Yan J; Clifton KB; Reep RL; Mecholsky JJ
    J Biomech Eng; 2006 Jun; 128(3):281-9. PubMed ID: 16706577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accumulation of in-vivo fatigue microdamage and its relation to biomechanical properties in ageing human cortical bone.
    Zioupos P
    J Microsc; 2001 Feb; 201(Pt 2):270-8. PubMed ID: 11430140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a fluorescent light technique for evaluating microdamage in bone subjected to fatigue loading.
    Huja SS; Hasan MS; Pidaparti R; Turner CH; Garetto LP; Burr DB
    J Biomech; 1999 Nov; 32(11):1243-9. PubMed ID: 10541076
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compressive rib fracture: peri-mortem and post-mortem trauma patterns in a pig model.
    Kieser JA; Weller S; Swain MV; Neil Waddell J; Das R
    Leg Med (Tokyo); 2013 Jul; 15(4):193-201. PubMed ID: 23453778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Risedronate treatment does not increase microdamage in the canine femoral neck.
    Forwood MR; Burr DB; Takano Y; Eastman DF; Smith PN; Schwardt JD
    Bone; 1995 Jun; 16(6):643-50. PubMed ID: 7669441
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.