These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 7527062)

  • 1. Retinogeniculate projection fibers in the monkey optic chiasm: a demonstration of the fiber arrangement by means of wheat germ agglutinin conjugated to horseradish peroxidase.
    Naito J
    J Comp Neurol; 1994 Aug; 346(4):559-71. PubMed ID: 7527062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Retinogeniculate projection fibers in the monkey optic nerve: a demonstration of the fiber pathways by retrograde axonal transport of WGA-HRP.
    Naito J
    J Comp Neurol; 1989 Jun; 284(2):174-86. PubMed ID: 2474002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Course of retinogeniculate projection fibers in the cat optic nerve.
    Naito J
    J Comp Neurol; 1986 Sep; 251(3):376-87. PubMed ID: 3021825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in the retinotopical fiber order along the horizontal and dorsoventral axes of the nasal retina in the monkey optic chiasm.
    Naito J
    Cell Tissue Res; 2000 Dec; 302(3):387-90. PubMed ID: 11151450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of retinogeniculate cells in the tammar wallaby in relation to decussation at the optic chiasm.
    Wimborne BM; Mark RF; Ibbotson MR
    J Comp Neurol; 1999 Mar; 405(1):128-40. PubMed ID: 10022200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Normal activity-dependent refinement in a compressed retinotectal projection in goldfish.
    Olson MD; Meyer RL
    J Comp Neurol; 1994 Sep; 347(4):481-94. PubMed ID: 7529264
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibre organization of the monkey's optic tract: I. Segregation of functionally distinct optic axons.
    Reese BE; Cowey A
    J Comp Neurol; 1990 May; 295(3):385-400. PubMed ID: 2351758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in fiber order in the optic nerve and tract of rat embryos.
    Chan SO; Guillery RW
    J Comp Neurol; 1994 Jun; 344(1):20-32. PubMed ID: 8063954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A WGA-HRP study of the fiber arrangement in the cat optic radiation: a demonstration via three-dimensional reconstruction.
    Senoh K; Naito J
    Exp Brain Res; 1991; 87(3):473-83. PubMed ID: 1723690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinotopic organization of central optic projections in Rana pipiens.
    Montgomery N; Fite KV
    J Comp Neurol; 1989 May; 283(4):526-40. PubMed ID: 2787335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Location of retinal ganglion cells contributing to the early imprecision in the retinotopic order of the developing projection to the superior colliculus of the wallaby (Macropus eugenii).
    Marotte LR
    J Comp Neurol; 1993 May; 331(1):1-13. PubMed ID: 7686568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual system of the channel catfish (Ictalurus punctatus): III. Fiber order in the optic nerve and optic tract.
    Dunn-Meynell AA; Sharma SC
    J Comp Neurol; 1988 Feb; 268(3):299-312. PubMed ID: 3360990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The origin and terminal arbors of individual uncrossed retinogeniculate fibers in rabbits.
    Jen LS; Cheung YM; Chow KL
    Neuroscience; 1989; 29(2):479-93. PubMed ID: 2471115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Demonstration of bilateral projection of the central retina of the monkey with horseradish peroxidase neuronography.
    Bunt AH; Minckler DS; Johanson GW
    J Comp Neurol; 1977 Feb; 171(4):619-30. PubMed ID: 401836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The organization of the fibers in the optic nerve of normal and tectum-less Rana pipiens.
    Reh TA; Pitts E; Constantine-Paton M
    J Comp Neurol; 1983 Aug; 218(3):282-96. PubMed ID: 6604077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organization of thalamic projections to the ventral striatum in the primate.
    Giménez-Amaya JM; McFarland NR; de las Heras S; Haber SN
    J Comp Neurol; 1995 Mar; 354(1):127-49. PubMed ID: 7542290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fate of uncrossed retinal projections following early or late prenatal monocular enucleation in the mouse.
    Godement P; Salaün J; Métin C
    J Comp Neurol; 1987 Jan; 255(1):97-109. PubMed ID: 3819012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Projection from the pretectal nuclei to the dorsal lateral geniculate nucleus in the cat: a wheat germ agglutinin-horseradish peroxidase study.
    Kubota T; Morimoto M; Kanaseki T; Inomata H
    Brain Res; 1987 Sep; 421(1-2):30-40. PubMed ID: 2446702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The re-establishment of the representation of the dorso-ventral retinal axis in the chiasmatic region of the ferret.
    Reese BE; Baker GE
    Vis Neurosci; 1993; 10(5):957-68. PubMed ID: 8217945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Macaque accessory optic system: II. Connections with the pretectum.
    Baleydier C; Magnin M; Cooper HM
    J Comp Neurol; 1990 Dec; 302(2):405-16. PubMed ID: 1705270
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.