BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

255 related articles for article (PubMed ID: 7527201)

  • 1. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: development of probes for Ruminococcus species and evidence for bacteriocin production.
    Odenyo AA; Mackie RI; Stahl DA; White BA
    Appl Environ Microbiol; 1994 Oct; 60(10):3688-96. PubMed ID: 7527201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: pure-culture studies with cellulose and alkaline peroxide-treated wheat straw.
    Odenyo AA; Mackie RI; Stahl DA; White BA
    Appl Environ Microbiol; 1994 Oct; 60(10):3697-703. PubMed ID: 7527202
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competition for cellulose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions.
    Shi Y; Odt CL; Weimer PJ
    Appl Environ Microbiol; 1997 Feb; 63(2):734-42. PubMed ID: 9023950
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Yeoman CJ; Fields CJ; Lepercq P; Ruiz P; Forano E; White BA; Mosoni P
    mBio; 2021 Mar; 12(2):. PubMed ID: 33658330
    [No Abstract]   [Full Text] [Related]  

  • 5. Competition for cellobiose among three predominant ruminal cellulolytic bacteria under substrate-excess and substrate-limited conditions.
    Shi Y; Weimer PJ
    Appl Environ Microbiol; 1997 Feb; 63(2):743-8. PubMed ID: 9023951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 16S rDNA sequencing of Ruminococcus albus and Ruminococcus flavefaciens: design of a signature probe and its application in adult sheep.
    Krause DO; Dalrymple BP; Smith WJ; Mackie RI; McSweeney CS
    Microbiology (Reading); 1999 Jul; 145 ( Pt 7)():1797-1807. PubMed ID: 10439419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competition among three predominant ruminal cellulolytic bacteria in the absence or presence of non-cellulolytic bacteria.
    Chen J; Weimer P
    Microbiology (Reading); 2001 Jan; 147(Pt 1):21-30. PubMed ID: 11160797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens.
    Koike S; Kobayashi Y
    FEMS Microbiol Lett; 2001 Nov; 204(2):361-6. PubMed ID: 11731149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a signature probe targeting the 16S-23S rRNA internal transcribed spacer of a ruminal Ruminococcus flavefaciens isolate from reindeer.
    Præsteng KE; Mackie RI; Cann IK; Mathiesen SD; Sundset MA
    Benef Microbes; 2011 Mar; 2(1):47-55. PubMed ID: 21831789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Utilization of individual cellodextrins by three predominant ruminal cellulolytic bacteria.
    Shi Y; Weimer PJ
    Appl Environ Microbiol; 1996 Mar; 62(3):1084-8. PubMed ID: 8975600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fibrolytic activities and cellulolytic bacterial community structure in the solid and liquid phases of rumen contents.
    Michalet-Doreau B; Fernandez I; Peyron C; Millet L; Fonty G
    Reprod Nutr Dev; 2001; 41(2):187-94. PubMed ID: 11434522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repeated ruminal dosing of Ruminococcus spp. does not result in persistence, but changes in other microbial populations occur that can be measured with quantitative 16S-rRNA-based probes.
    Krause DO; Bunch RJ; Conlan LL; Kennedy PM; Smith WJ; Mackie RI; McSweeney CS
    Microbiology (Reading); 2001 Jul; 147(Pt 7):1719-1729. PubMed ID: 11429450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnesium requirement of some of the principal rumen cellulolytic bacteria.
    Morales MS; Dehority BA
    Animal; 2014 Sep; 8(9):1427-32. PubMed ID: 24846132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of succinate from glucose, cellobiose, and various cellulosic materials by the ruminal anaerobic bacteria Fibrobacter succinogenes and Ruminococcus flavefaciens.
    Gokarn RR; Eiteman MA; Martin SA; Eriksson KE
    Appl Biochem Biotechnol; 1997; 68(1-2):69-80. PubMed ID: 9373931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competition between ruminal cellulolytic bacteria for adhesion to cellulose.
    Mosoni P; Fonty G; Gouet P
    Curr Microbiol; 1997 Jul; 35(1):44-7. PubMed ID: 9175559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionized calcium requirement of rumen cellulolytic bacteria.
    Morales MS; Dehority BA
    J Dairy Sci; 2009 Oct; 92(10):5079-91. PubMed ID: 19762826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of [(15)N] ammonia by the cellulolytic ruminal bacteria Fibrobacter succinogenes BL2, Ruminococcus albus SY3, and Ruminococcus flavefaciens 17.
    Atasoglu C; Newbold CJ; Wallace RJ
    Appl Environ Microbiol; 2001 Jun; 67(6):2819-22. PubMed ID: 11375199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring of gene expression in Fibrobacter succinogenes S85 under the co-culture with non-fibrolytic ruminal bacteria.
    Fukuma NM; Koike S; Kobayashi Y
    Arch Microbiol; 2015 Mar; 197(2):269-76. PubMed ID: 25354721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyclonal antibodies inhibit growth of key cellulolytic rumen bacterial species.
    Tondini SM; Mackie RI; McCann JC
    Front Microbiol; 2023; 14():1196492. PubMed ID: 37408639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of wheat straw and alkaline hydrogen peroxide-treated wheat straw by Ruminococcus albus 8 and Ruminococcus flavefaciens FD-1.
    Odenyo AA; Mackie RI; Fahey GC; White BA
    J Anim Sci; 1991 Feb; 69(2):819-26. PubMed ID: 2016208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.